8 research outputs found

    Meta-coexpression conservation analysis of microarray data: a "subset" approach provides insight into brain-derived neurotrophic factor regulation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alterations in brain-derived neurotrophic factor (<it>BDNF</it>) gene expression contribute to serious pathologies such as depression, epilepsy, cancer, Alzheimer's, Huntington and Parkinson's disease. Therefore, exploring the mechanisms of <it>BDNF </it>regulation represents a great clinical importance. Studying <it>BDNF </it>expression remains difficult due to its multiple neural activity-dependent and tissue-specific promoters. Thus, microarray data could provide insight into the regulation of this complex gene. Conventional microarray co-expression analysis is usually carried out by merging the datasets or by confirming the re-occurrence of significant correlations across datasets. However, co-expression patterns can be different under various conditions that are represented by subsets in a dataset. Therefore, assessing co-expression by measuring correlation coefficient across merged samples of a dataset or by merging datasets might not capture all correlation patterns.</p> <p>Results</p> <p>In our study, we performed meta-coexpression analysis of publicly available microarray data using <it>BDNF </it>as a "guide-gene" introducing a "subset" approach. The key steps of the analysis included: dividing datasets into subsets with biologically meaningful sample content (e.g. tissue, gender or disease state subsets); analyzing co-expression with the <it>BDNF </it>gene in each subset separately; and confirming co- expression links across subsets. Finally, we analyzed conservation in co-expression with <it>BDNF </it>between human, mouse and rat, and sought for conserved over-represented TFBSs in <it>BDNF </it>and BDNF-correlated genes. Correlated genes discovered in this study regulate nervous system development, and are associated with various types of cancer and neurological disorders. Also, several transcription factor identified here have been reported to regulate <it>BDNF </it>expression <it>in vitro </it>and <it>in vivo</it>.</p> <p>Conclusion</p> <p>The study demonstrates the potential of the "subset" approach in co-expression conservation analysis for studying the regulation of single genes and proposes novel regulators of <it>BDNF </it>gene expression.</p

    Tissue-specific and neural activity-regulated expression of human BDNF gene in BAC transgenic mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Brain-derived neurotrophic factor (BDNF) is a small secreted protein that has important roles in the developing and adult nervous system. Altered expression or changes in the regulation of the BDNF gene have been implicated in a variety of human nervous system disorders. Although regulation of the rodent BDNF gene has been extensively investigated, <it>in vivo </it>studies regarding the human BDNF gene are largely limited to postmortem analysis. Bacterial artificial chromosome (BAC) transgenic mice harboring the human BDNF gene and its regulatory flanking sequences constitute a useful tool for studying human BDNF gene regulation and for identification of therapeutic compounds modulating BDNF expression.</p> <p>Results</p> <p>In this study we have generated and analyzed BAC transgenic mice carrying 168 kb of the human BDNF locus modified such that BDNF coding sequence was replaced with the sequence of a fusion protein consisting of N-terminal BDNF and the enhanced green fluorescent protein (EGFP). The human BDNF-BAC construct containing all BDNF 5' exons preceded by different promoters recapitulated the expression of endogenous BDNF mRNA in the brain and several non-neural tissues of transgenic mice. All different 5' exon-specific BDNF-EGFP alternative transcripts were expressed from the transgenic human BDNF-BAC construct, resembling the expression of endogenous BDNF. Furthermore, BDNF-EGFP mRNA was induced upon treatment with kainic acid in a promotor-specific manner, similarly to that of the endogenous mouse BDNF mRNA.</p> <p>Conclusion</p> <p>Genomic region covering 67 kb of human BDNF gene, 84 kb of upstream and 17 kb of downstream sequences is sufficient to drive tissue-specific and kainic acid-induced expression of the reporter gene in transgenic mice. The pattern of expression of the transgene is highly similar to BDNF gene expression in mouse and human. This is the first study to show that human BDNF gene is regulated by neural activity.</p
    corecore