8 research outputs found

    FACTORS AFFECTING THE ADOPTION OF FINTECH: A STUDY BASED ON THE FINANCIAL INSTITUTIONS IN BANGLADESH

    Get PDF
    Financial technology (Fintech) refers to software and other modern technologies to provide automated and improved financial services. We surveyed to examine the factors influencing the adoption of Fintech in the financial institutions of Bangladesh with the help of the Unified Theory of Acceptance and Use of Technology (UTAUT) model and selected eight influencing factors. Before collecting data, a well-structured face-to-face survey was arranged. Structural Equation Modeling (SEM) with Generalized Least Squares method has been used to analyze the primary data gathered from 265 employees. The results verified that effort expectancy, social influence, facilitating condition, perceived reliability, added value positively influence the behavior intention to adopt Fintech. Additionally, the age of the respondents has a significant moderating effect on almost all the factors on Fintech adoption

    Riparian Zone Nitrogen Management through the Development of the Riparian Ecosystem Management Model (REMM) in a Formerly Glaciated Watershed of the US Northeast

    Get PDF
    The Riparian Ecosystem Management Model (REMM) was developed, calibrated and validated for both hydrologic and water quality data for eight riparian buffers located in a formerly glaciated watershed (upper Pawcatuck River Watershed, Rhode Island) of the US Northeast. The Annualized AGricultural Non-Point Source model (AnnAGNPS) was used to predict the runoff and sediment loading to the riparian buffer. Overall, results showed REMM simulated water table depths (WTDs) and groundwater NO3-N concentrations at the stream edge (Zone 1) in good agreement with measured values. The model evaluation statistics showed that, hydrologically REMM performed better for site 1, site 4, and site 8 among the eight buffers, whereas REMM simulated better groundwater NO3-N concentrations in the case of site 1, site 5, and site 7 when compared to the other five sites. The interquartile range of mean absolute error for WTDs was 3.5 cm for both the calibration and validation periods. In the case of NO3-N concentrations prediction, the interquartile range of the root mean square error was 0.25 mg/L and 0.69 mg/L for the calibration and validation periods, respectively, whereas the interquartile range of d for NO3-N concentrations was 0.20 and 0.48 for the calibration and validation period, respectively. Moreover, REMM estimation of % N-removal from Zone 3 to Zone 1 was 19.7%, and 19.8% of N against actual measured 19.1%, and 26.6% of N at site 7 and site 8, respectively. The sensitivity analyses showed that changes in the volumetric water content between field capacity and saturation (soil porosity) were driving water table and denitrification

    Evaluation of AnnAGNPS Model for Runoff Simulation on Watersheds from Glaciated Landscape of USA Midwest and Northeast

    Get PDF
    Runoff modeling of glaciated watersheds is required to predict runoff for water supply, aquatic ecosystem management and flood prediction, and to deal with questions concerning the impact of climate and land use change on the hydrological system and watershed export of contaminants of glaciated watersheds. A widely used pollutant loading model, Annualized Agricultural Non-Point Source Pollution (AnnAGNPS) was applied to simulate runoff from three watersheds in glaciated geomorphic settings. The objective of this study was to evaluate the suitability of the AnnAGNPS model in glaciated landscapes for the prediction of runoff volume. The study area included Sugar Creek watershed, Indiana; Fall Creek watershed, New York; and Pawcatuck River watershed, Rhode Island, USA. The AnnAGNPS model was developed, calibrated and validated for runoff estimation for these watersheds. The daily and monthly calibration and validation statistics (NSE \u3e 0.50 and RSR \u3c 0.70, and PBIAS ± 25%) of the developed model were satisfactory for runoff simulation for all the studied watersheds. Once AnnAGNPS successfully simulated runoff, a parameter sensitivity analysis was carried out for runoff simulation in all three watersheds. The output from our hydrological models applied to glaciated areas will provide the capacity to couple edge-of-field hydrologic modeling with the examination of riparian or riverine functions and behaviors

    Dynamically Downscaled NARCCAP Climate Model Simulations: An Evaluation Analysis over Louisiana

    No full text
    In order to make informed decisions in response to future climate change, researchers, policy-makers, and the public need climate projections at the scale of few kilometers, rather than the scales provided by Global Climate Models. The North American Regional Climate Change Assessment Program (NARCCAP) is such a recent effort that addresses this necessity. As the climate models contain various levels of uncertainty, it is essential to evaluate the performance of such models and their representativeness of regional climate characteristics. When assessing climate change impacts, precipitation is a crucial variable, due to its direct influence on many aspects of our natural-human ecosystems such as freshwater resources, agriculture and energy production, and health and infrastructure. The current study performs an evaluation analysis of precipitation simulations produced by a set of dynamically downscaled climate models provided by the NARCCAP program. The Assessment analysis is implemented for a period that covers 20 to 30 years (1970-1999), depending on joint availability of both the observational and the NARCCAP datasets. In addition to direct comparison versus observations, the hindcast NARCCAP simulations are used within a hydrologic modeling analysis for a regional ecosystem in coastal Louisiana (Chenier Plain). The study concludes the NARCCAP simulations have systematic biases in representing average precipitation amounts, but are successful at capturing some of the characteristics on spatial and temporal variability. The study also reveals the effect of precipitation on salinity concentrations in the Chenier Plain as a result of using different precipitation forcing fields. In the future, special efforts should be made to reduce biases in the NARCCAP simulations, which can then lead to a better presentation of regional climate scenarios for use by decision makers and resource managers

    Sustainable Wastewater Management for Underdeveloped Communities -- A Hands-On Method for Qualitative and Quantitative Analysis of Greywater

    No full text
    The quantity of greywater produced in urban areas of Dhaka city in Bangladesh is around 96-112 litres per capita per day which is 60%—70% of the average water supplied. This huge amount of greywater could be recycled via a separate distribution system to meet water demand for greywater toilet systems, gardening and irrigation. The quality parameters of collected greywater samples ranged for pH between 6.67 to 7.92, conductivity between 548 to 999 µS-cm-1, turbidity between 54 to 435 NTU, colour between 28 to 367 (Pt-Co Unit), BOD5 between 60 to 299 mg-L-1 and COD between 135 to 751 mg-L-1. It is estimated that an annual savings of 59 million Taka (about 728,300 USD based on $1 = 81 Taka as of 4/13/2017) could be achieved in a chemical and purification process if greywater is recycled for this community. This practice of recycling greywater is a step toward sustainable wastewater management for underdeveloped communities struggling with capital and dwindling freshwater sources

    Evaluation of AnnAGNPS Model for Runoff Simulation on Watersheds from Glaciated Landscape of USA Midwest and Northeast

    No full text
    Runoff modeling of glaciated watersheds is required to predict runoff for water supply, aquatic ecosystem management and flood prediction, and to deal with questions concerning the impact of climate and land use change on the hydrological system and watershed export of contaminants of glaciated watersheds. A widely used pollutant loading model, Annualized Agricultural Non-Point Source Pollution (AnnAGNPS) was applied to simulate runoff from three watersheds in glaciated geomorphic settings. The objective of this study was to evaluate the suitability of the AnnAGNPS model in glaciated landscapes for the prediction of runoff volume. The study area included Sugar Creek watershed, Indiana; Fall Creek watershed, New York; and Pawcatuck River watershed, Rhode Island, USA. The AnnAGNPS model was developed, calibrated and validated for runoff estimation for these watersheds. The daily and monthly calibration and validation statistics (NSE > 0.50 and RSR < 0.70, and PBIAS ± 25%) of the developed model were satisfactory for runoff simulation for all the studied watersheds. Once AnnAGNPS successfully simulated runoff, a parameter sensitivity analysis was carried out for runoff simulation in all three watersheds. The output from our hydrological models applied to glaciated areas will provide the capacity to couple edge-of-field hydrologic modeling with the examination of riparian or riverine functions and behaviors

    Treatments for intracranial hypertension in acute brain-injured patients: grading, timing, and association with outcome. Data from the SYNAPSE-ICU study

    No full text
    Purpose: Uncertainties remain about the safety and efficacy of therapies for managing intracranial hypertension in acute brain injured (ABI) patients. This study aims to describe the therapeutical approaches used in ABI, with/without intracranial pressure (ICP) monitoring, among different pathologies and across different countries, and their association with six months mortality and neurological outcome. Methods: A preplanned subanalysis of the SYNAPSE-ICU study, a multicentre, prospective, international, observational cohort study, describing the ICP treatment, graded according to Therapy Intensity Level (TIL) scale, in patients with ABI during the first week of intensive care unit (ICU) admission. Results: 2320 patients were included in the analysis. The median age was 55 (I-III quartiles = 39-69) years, and 800 (34.5%) were female. During the first week from ICU admission, no-basic TIL was used in 382 (16.5%) patients, mild-moderate in 1643 (70.8%), and extreme in 295 cases (eTIL, 12.7%). Patients who received eTIL were younger (median age 49 (I-III quartiles = 35-62) vs 56 (40-69) years, p < 0.001), with less cardiovascular pre-injury comorbidities (859 (44%) vs 90 (31.4%), p < 0.001), with more episodes of neuroworsening (160 (56.1%) vs 653 (33.3%), p < 0.001), and were more frequently monitored with an ICP device (221 (74.9%) vs 1037 (51.2%), p < 0.001). Considerable variability in the frequency of use and type of eTIL adopted was observed between centres and countries. At six months, patients who received no-basic TIL had an increased risk of mortality (Hazard ratio, HR = 1.612, 95% Confidence Interval, CI = 1.243-2.091, p < 0.001) compared to patients who received eTIL. No difference was observed when comparing mild-moderate TIL with eTIL (HR = 1.017, 95% CI = 0.823-1.257, p = 0.873). No significant association between the use of TIL and neurological outcome was observed. Conclusions: During the first week of ICU admission, therapies to control high ICP are frequently used, especially mild-moderate TIL. In selected patients, the use of aggressive strategies can have a beneficial effect on six months mortality but not on neurological outcome
    corecore