3 research outputs found

    Electronic Circular Dichroism of the Chiral Rigid Tricyclic Dilactam with Nonplanar Tertiary Amide Groups

    No full text
    Electronic circular dichroism (ECD) of the spirocyclic dilactam 5,8-diazatricyclo­[6,3,0,0<sup>1,5</sup>]­undecane-4,9-dione has been measured in the extended wavelength range (170–260 nm) utilizing far-UV CD instrumentation including synchrotron radiation light source. The data of this model of two nonplanar tertiary amide groups interacting within the rigid chiral environment provided new information particularly about the shorter wavelength π–π* transition region below 190 nm. The interpretation using TDDFT calculations confirmed that effects of amide nonplanarity follow our previous observations on <i>mono</i>lactams as far as amide n−π* transitions are concerned. ECD band in the n−π* transition region of the nonplanar <i>di</i>amide exhibits an identical bathochromic shift and its sign remains tied to the sense of nonplanar deformation in the same way. As far as n−π* transitions are concerned amide nonplanarity acts as a local phenomenon independently reflecting sum properties of single amide groups. On the other hand, CD bands associated with π–π* transitions (found between ∼170 to 210 nm) form an exciton-like couplet with the sign pattern determined by mutual orientation of the associated electric transition moments. This sign pattern follows predictions pertaining to a coupled oscillator. The influence of amide nonplanarity on π–π* transitions is only minor and concentrates into the shorter wavelength lobe of the π–π* couplet. The detailed analysis of experimental ECD with the aid of TDDFT calculations shows that there is only little interaction between effects of inherent chirality caused by nonplanarity of amide groups and amide–amide coupling. Consequently these two effects can be studied nearly independently using ECD. In addition, the calculations indicate that participation of other type of transitions (n−σ*, π–σ* or Rydberg type transitions) is only minor and is concentrated below 180 nm

    Anisotropic Organization and Microscopic Manipulation of Self-Assembling Synthetic Porphyrin Microrods That Mimic Chlorosomes: Bacterial Light-Harvesting Systems

    No full text
    Being able to control in time and space the positioning, orientation, movement, and sense of rotation of nano- to microscale objects is currently an active research area in nanoscience, having diverse nanotechnological applications. In this paper, we demonstrate unprecedented control and maneuvering of rod-shaped or tubular nanostructures with high aspect ratios which are formed by self-assembling synthetic porphyrins. The self-assembly algorithm, encoded by appended chemical-recognition groups on the periphery of these porphyrins, is the same as the one operating for chlorosomal bacteriochlorophylls (BChl's). Chlorosomes, rod-shaped organelles with relatively long-range molecular order, are the most efficient naturally occurring light-harvesting systems., They are used by green photosynthetic bacteria to trap visible and infrared light of minute intensities even at great depths, e.g., 100 m below water surface or in volcanic vents in the absence of solar radiation. In contrast to most other natural light-harvesting systems, the chlorosomal antennae are devoid of a protein scaffold to orient the BChl's; thus, they are an attractive goal for mimicry by synthetic chemists, who are able to engineer more robust chromophores to self-assemble. Functional devices with environmentally friendly chromophoreswhich should be able to act as photosensitizers within hybrid solar cells, leading to high photon-to-current conversion efficiencies even under low illumination conditionshave yet to be fabricated. The orderly manner in which the BChl's and their synthetic counterparts self-assemble imparts strong diamagnetic and optical anisotropies and flow/shear characteristics to their nanostructured assemblies, allowing them to be manipulated by electrical, magnetic, or tribomechanical forces

    Anisotropic Organization and Microscopic Manipulation of Self-Assembling Synthetic Porphyrin Microrods That Mimic Chlorosomes: Bacterial Light-Harvesting Systems

    No full text
    Being able to control in time and space the positioning, orientation, movement, and sense of rotation of nano- to microscale objects is currently an active research area in nanoscience, having diverse nanotechnological applications. In this paper, we demonstrate unprecedented control and maneuvering of rod-shaped or tubular nanostructures with high aspect ratios which are formed by self-assembling synthetic porphyrins. The self-assembly algorithm, encoded by appended chemical-recognition groups on the periphery of these porphyrins, is the same as the one operating for chlorosomal bacteriochlorophylls (BChl's). Chlorosomes, rod-shaped organelles with relatively long-range molecular order, are the most efficient naturally occurring light-harvesting systems., They are used by green photosynthetic bacteria to trap visible and infrared light of minute intensities even at great depths, e.g., 100 m below water surface or in volcanic vents in the absence of solar radiation. In contrast to most other natural light-harvesting systems, the chlorosomal antennae are devoid of a protein scaffold to orient the BChl's; thus, they are an attractive goal for mimicry by synthetic chemists, who are able to engineer more robust chromophores to self-assemble. Functional devices with environmentally friendly chromophoreswhich should be able to act as photosensitizers within hybrid solar cells, leading to high photon-to-current conversion efficiencies even under low illumination conditionshave yet to be fabricated. The orderly manner in which the BChl's and their synthetic counterparts self-assemble imparts strong diamagnetic and optical anisotropies and flow/shear characteristics to their nanostructured assemblies, allowing them to be manipulated by electrical, magnetic, or tribomechanical forces
    corecore