18 research outputs found

    Extracellular Vesicle Release and Uptake by the Liver Under Normo‐ and Hyperlipidemia

    Get PDF
    Liver plays a central role in elimination of circulating extracellular vesicles (EVs), and it also significantly contributes to EV release. However, the involvement of the different liver cell populations remains unknown. Here, we investigated EV uptake and release both in normolipemia and hyperlipidemia. C57BL/6 mice were kept on high fat diet for 20–30 weeks before circulating EV profiles were determined. In addition, control mice were intravenously injected with (99m)Tc-HYNIC-Duramycin labeled EVs, and an hour later, biodistribution was analyzed by SPECT/CT. In vitro, isolated liver cell types were tested for EV release and uptake with/without prior fatty acid treatment. We detected an elevated circulating EV number after the high fat diet. To clarify the differential involvement of liver cell types, we carried out in vitro experiments. We found an increased release of EVs by primary hepatocytes at concentrations of fatty acids comparable to what is characteristic for hyperlipidemia. When investigating EV biodistribution with (99m)Tc-labeled EVs, we detected EV accumulation primarily in the liver upon intravenous injection of mice with medium (326.3 ± 19.8 nm) and small EVs (130.5 ± 5.8 nm). In vitro, we found that medium and small EVs were preferentially taken up by Kupffer cells, and liver sinusoidal endothelial cells, respectively. Finally, we demonstrated that in hyperlipidemia, there was a decreased EV uptake both by Kupffer cells and liver sinusoidal endothelial cells. Our data suggest that hyperlipidema increases the release and reduces the uptake of EVs by liver cells. We also provide evidence for a size-dependent differential EV uptake by the different cell types of the liver. The EV radiolabeling protocol using (99m)Tc-Duramycin may provide a fast and simple labeling approach for SPECT/CT imaging of EVs biodistribution. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00018-021-03969-6

    Transcriptional Evidence for the Role of Chronic Venlafaxine Treatment in Neurotrophic Signaling and Neuroplasticity Including also Glutatmatergic- and Insulin-Mediated Neuronal Processes.

    Get PDF
    OBJECTIVES: Venlafaxine (VLX), a serotonine-noradrenaline reuptake inhibitor, is one of the most commonly used antidepressant drugs in clinical practice for the treatment of major depressive disorder (MDD). Despite being more potent than its predecessors, similarly to them, the therapeutical effect of VLX is visible only 3-4 weeks after the beginning of treatment. Furthermore, recent papers show that antidepressants, including also VLX, enhance the motor recovery after stroke even in non depressed persons. In the present, transcriptomic-based study we looked for changes in gene expressions after a long-term VLX administration. METHODS: Osmotic minipumps were implanted subcutaneously into Dark Agouti rats providing a continuous (40 mg/kg/day) VLX delivery for three weeks. Frontal regions of the cerebral cortex were isolated and analyzed using Illumina bead arrays to detect genes showing significant chances in expression. Gene set enrichment analysis was performed to identify specific regulatory networks significantly affected by long term VLX treatment. RESULTS: Chronic VLX administration may have an effect on neurotransmitter release via the regulation of genes involved in vesicular exocytosis and receptor endocytosis (such as Kif proteins, Myo5a, Sv2b, Syn2 or Synj2). Simultaneously, VLX activated the expression of genes involved in neurotrophic signaling (Ntrk2, Ntrk3), glutamatergic transmission (Gria3, Grin2b and Grin2a), neuroplasticity (Camk2g/b, Cd47), synaptogenesis (Epha5a, Gad2) and cognitive processes (Clstn2). Interestingly, VLX increased the expression of genes involved in mitochondrial antioxidant activity (Bcl2 and Prdx1). Additionally, VLX administration also modulated genes related to insulin signaling pathway (Negr1, Ppp3r1, Slc2a4 and Enpp1), a mechanism that has recently been linked to neuroprotection, learning and memory. CONCLUSIONS: Our results strongly suggest that chronic VLX treatment improves functional reorganization and brain plasticity by influencing gene expression in regulatory networks of motor cortical areas. These results are consonant with the synaptic (network) hypothesis of depression and antidepressant-induced motor recovery after stroke

    Királyi vacsora mindhalálig

    No full text
    Az, hogy mi történik egy sejtben, elsősorban a tápanyagoktól függ. Az erre adott sejtválasz fontos meghatározói a sejtben lévő gének. A máj funkcióját érintő genetikai polimorfizmusok szerepet játszanak abban, hogy a máj hogyan alakítja át és raktározza a lipideket. Mivel ez egyenként változik, a májbetegségekre való hajlam is különböző

    Farmakogenetika-gyógyszerelés a DNS tükrében

    Get PDF
    A DNS bázissorrendjének ismerete, valamint a genetikai kódok feltárása nem csak a világról való ismereteinket gazdagította, de az orvoslásban is nagy változásokhoz vezetett. Az így feltárt eltérések miatt a beteg genetikai hátterének ismeretében a gyógyszer dózisa személyre szabottan beállítható. Az egyéni genetikai variációra épülő dózis sokkal jobb hatékonysággal és kevesebb mellékhatással bír. Mindemellett olyan betegek is gyógyszerelhetővé válhatnak, akiknek eddig fel nem fedett genetikai okokból kellett lemondaniuk a terápiáról

    The emerging role of aryl hydrocarbon receptor in the activation and differentiation of Th17 cells

    No full text
    The aryl hydrocarbon receptor (AHR) is a cytoplasmic transcription factor, which plays an essential role in the xenobiotic metabolism in a wide variety of cells. The AHR gene is evolutionarily conserved and it has a central role not only in the differentiation and maturation of many tissues, but also in the toxicological metabolism of the cell by the activation of metabolizing enzymes. Several lines of evidence support that both AHR agonists and antagonists have profound immunological effects; and recently, the AHR has been implicated in antibacterial host defense. According to recent studies, the AHR is essential for the differentiation and activation of T helper 17 (Th17) cells. It is well known that Th17 cells have a central role in the development of inflammation, which is crucial in the defense against pathogens. In addition, Th17 cells play a major role in the pathogenesis of several autoimmune diseases such as rheumatoid arthritis. Therefore, the AHR may provide connection between the environmental chemicals, the immune regulation, and autoimmunity. In the present review, we summarize the role of the AHR in the Th17 cell functions

    Chronic Exposure to the Food Additive tBHQ Modulates Expression of Genes Related to SARS-CoV-2 and Influenza Viruses

    Get PDF
    Background. tert-butylhydroquinone (tBHQ) is an antioxidant commonly used as a food additive. Studies suggest that tBHQ could modulate immune responses to influenza and SARS-CoV-2 infection. In our transcriptomic analysis we explored the molecular mechanisms behind tBHQ’s modulatory properties and the relationships to respiratory viral infections. Methods. tBHQ was administered per os to BALB/c mice (1.5% [w/w]) for 20 days. Splenic T cells were isolated with magnetic separation and subjected to transcriptomic analysis. Gene-set enrichment analysis and g:Profiler was conducted to provide a functional interpretation of significantly changed genes. Further analysis for AHR/NRF2 binding sites was performed with GeneHancer. Results. In CD4+ cells, we found significantly altered expression of 269 genes by tBHQ. Of them, many had relevance in influenza infection such as genes responsible for virus entry (Anxa1/2, Cd14), interferon signaling (Dusp10, Tnfsf13), or prostaglandin synthesis (Ptgs1/2). In SARS-CoV-2 infections, interferon signaling (Ifitm1), proteolytic enzymes (CtsB), and also cell-surface proteins (Cd14, Cd151) were among the prominent alterations after tBHQ exposure. Of these genes, many had one or more binding sites for AHR and NRF2, two major xenosensors triggered by tBHQ. Conclusions. Our results strongly suggest that a common food additive, tBHQ, can modulate virus-dependent processes in both influenza and SARS-CoV-2 infections

    Molecular Mechanisms Underlying the Elevated Expression of a Potentially Type 2 Diabetes Mellitus Associated SCD1 Variant

    No full text
    Disturbances in lipid metabolism related to excessive food intake and sedentary lifestyle are among major risk of various metabolic disorders. Stearoyl-CoA desaturase-1 (SCD1) has an essential role in these diseases, as it catalyzes the synthesis of unsaturated fatty acids, both supplying for fat storage and contributing to cellular defense against saturated fatty acid toxicity. Recent studies show that increased activity or over-expression of SCD1 is one of the contributing factors for type 2 diabetes mellitus (T2DM). We aimed to investigate the impact of the common missense rs2234970 (M224L) polymorphism on SCD1 function in transfected cells. We found a higher expression of the minor Leu224 variant, which can be attributed to a combination of mRNA and protein stabilization. The latter was further enhanced by various fatty acids. The increased level of Leu224 variant resulted in an elevated unsaturated: saturated fatty acid ratio, due to higher oleate and palmitoleate contents. Accumulation of Leu224 variant was found in a T2DM patient group, however, the difference was statistically not significant. In conclusion, the minor variant of rs2234970 polymorphism might contribute to the development of obesity-related metabolic disorders, including T2DM, through an increased intracellular level of SCD1

    High fat diet and PCSK9 knockout modulates lipid profile of the liver and changes the expression of lipid homeostasis related genes

    No full text
    Background: High fat diet (HFD) increases the likelihood of dyslipidemia, which can be a serious risk factor for atherosclerosis, diabetes or hepatosteatosis. Although changes in different blood lipid levels were broadly investigated, such alterations in the liver tissue have not been studied before. The aim of the current study was to investigate the effect of HFD on hepatic triglyceride (TG), diglyceride (DG) and ceramide (CER) levels and on the expression of four key genes involved in lipid homeostasis (Pcsk9, Ldlr, Cd36 and Anxa2) in the liver. In addition, the potential role of PCSK9 in the observed changes was further investigated by using PCSK9 deficient mice. Methods: We used two in vivo models: mice kept on HFD for 20 weeks and PCSK9−/− mice. The amount of the major TGs, DGs and CERs was measured by using HPLC–MS/MS analysis. The expression profiles of four lipid related genes, namely Pcsk9, Ldlr, Cd36 and Anxa2 were assessed. Co-localization studies were performed by confocal microscopy. Results: In HFD mice, hepatic PCSK9 expression was decreased and ANXA2 expression was increased both on mRNA and protein levels, and the amount of LDLR and CD36 receptor proteins was increased. While LDLR protein level was also elevated in the livers of PCSK9−/− mice, there was no significant change in the expression of ANXA2 and CD36 in these animals. HFD induced a significant elevation in the hepatic levels of all measured TG and DG but not of CER types, and increased the proportion of monounsaturated vs. saturated TGs and DGs. Similar changes were detected in the hepatic lipid profiles of HFD and PCSK9−/− mice. Co-localization of PCSK9 with LDLR, CD36 and ANXA2 was verif ied in HepG2 cells. Conclusions: Our results show that obesogenic HFD downregulates PCSK9 expression in the liver and causes alterations in the hepatic lipid accumulation, which resemble those observed in PCSK9 deficiency. These findings suggest that PCSK9-mediated modulation of LDLR and CD36 expression might contribute to the HFD-induced changes in lipid homeostasis
    corecore