7 research outputs found

    Szupramolekuláris rendszerek fotofizikai és fotokémiai tulajdonságai = Photophisical and photochemical properties of supramolecular systems

    Get PDF
    Fotoaktív vegyületek (olyan anyagok, amelyek alkalmazása optikai tulajdonságain alapul) tulajdonságait tanulmányoztuk oldatfázisban és szupramolekuláris komplexekben, UV-látható abszorpciós, fluoreszcencia és CD spektroszkópiai mérésekkel, továbbá időfelbontásos lézerspektroszkópiai kísérletekkel. Az eredményeket több esetben kvantumkémiai számítások alapján értelmeztük. Kutatásaink eredményeként - új modellt állítottunk fel fluoreszkáló kationos festékek orientációs relaxációjára oldatban, - fluoreszcens próbaként alkalmazható vegyületek gerjesztett elektronállapotait vizsgálva tisztáztuk a dezaktíválódási folyamatok mechanizmusát, - jellemeztük fémionok optikai kimutatására szolgáló szupramolekuláris receptorok ionmegkötésének szelektivítását, és királis ligandumok megkötésére szolgáló szupramolekuláris receptorok enantioszelektivítását, - tanulmányoztuk kationos festékek megkötődését több kötéshelyű szupramolekuláris receptorokon, párhuzamos reakciókból álló reakció-modelleket állítottunk fel és kiszámítottuk az egyensúlyi állandókat, - meghatároztuk a fotodinamikus terápiában (PDT) potenciálisan hatóanyagként alkalmazható ftalocianinoknak a PDT-s hatás szempontjából érdekes fotofizikai/fotokémiai jellemzőit. | Photoactive compounds have been studied in solution and in supramolecular complexes by UV-VIS absorption, fluorescence and CD spectroscopy and by time-resolved laser spectroscopic experiments. The results have been interpreted with help of quantum chemical calculations. As results of the project - a new model has been created to describe the orientational relaxation of fluorescent cationic dyes, - the decay mechanism of the excited electronic states of some fluorescent probes has been clarified, - equilibrium constants characterizing the selectivity of new metal ion binding supramolecular receptors and the enantioselectivity of new chiral supramolecular receptors have been determined, - the binding of cationic dyes on supramolecular receptors with multiple binding sites has been studied, the results have been interpreted in terms of reaction models with simultaneous reactions, - the photophysical/photochemical characteristics of new phtalocyanines relevant of their application in photodynamic therapy, have been determined

    Solvation and Protonation of Coumarin 102 in Aqueous Media - a Fluorescence Spectroscopic and Theoretical Study

    Get PDF
    The ground and excited state protonation of Coumarin 102 (C102), a fluorescent probe applied frequently in heterogeneous systems with an aqueous phase, has been studied in aqueous solutions by spectroscopic experiments and theoretical calculations. For the dissociation constant of the protonated form in the ground state, was obtained from the absorption spectra, for the excited state dissociation constant was obtained from the fluorescence spectra. These values were closely reproduced by theoretical calculations via a thermodynamic cycle – the value of also by calculations via the Förster cycle - using an implicit-explicit solvation model (polarized continuum model + addition of a solvent molecule). The theoretical calculations indicated that (i) in the ground state C102 occurs primarily as a hydrogen bonded water complex, with the oxo group as the binding site, (ii) this hydrogen bond becomes stronger upon excitation; (iii) in the ground state the amino nitrogen atom, in the excited state the carboxy oxygen atom is the protonation site. A comprehensive analysis of fluorescence decay data yielded the values kpr = 3.271010 M-1 s 1 for the rate constants of excited state protonation, and kdpr = 2.78108 s-1 for the rate constant of the reverse process (kpr and kdpr were treated as independent parameters). This, considering the relatively long fluorescence lifetimes of neutral C102 (6.02 ns) and its protonated form (3.06 ns) in aqueous media, means that a quasi-equilibrium state of excited state proton transfer is reached in strongly acidic solutions

    The kinetics and mechanism of photooxygenation of 4’-diethylamino-3-hydroxyflavone

    No full text
    The photolysis reactions of 4’-diethylamino-3-hydroxyflavone (D), a versatile fluorescent probe showing excited-state intramolecular proton transfer (ESIPT), and the magnesium chelate of D (MgD2+) have been studied in acetonitrile solution. Upon UV irradiation both species were oxidized into O-4-diethylaminobenzoyl salicylic acid, differently from the photoreaction of the parent compound 3-hydroxyflavone (3HF) which was described to undergo rearrangement to 3-hydroxy-3-phenyl-indan-1,2-dione. The photooxygenation of the Mg2+ complex was found to be significantly faster than the reaction of the pure dye. As the kinetic analysis of the absorption spectra of samples under irradiation showed, the rate coefficients for the oxygenations of the excited state dye and complex have close values, kox(D*) = 2.4 × 107 min−1, kox(MgD2+*) = 3.9 × 107 min−1; the difference arises from the higher photooxygenation quantum yield of the complex, Φ(MgD2+) = 2.3 × 10−3, than the respective value for the pure dye, Φ(D) = 1.5 × 10−4. The potential energy surface of the photooxygenation of D was calculated assuming a reaction path in which the phototautomer formed from D via ESIPT, reacts in its triplet state with triplet molecular oxygen O2, a mechanism similar to that suggested for the photoreaction of the parent 3HF. The moderate values for the transition state energies confirmed the plausibility of the hypothetical mechanism
    corecore