60 research outputs found
Sequence Polymorphism, Segmental Recombination and Toggling Amino Acid Residues within the DBL3X Domain of the VAR2CSA Placental Malaria Antigen
Plasmodium falciparum malaria remains one of the world's foremost health problems, primarily in highly endemic regions such as Sub-Saharan Africa, where it is responsible for substantial morbidity, mortality and economic losses. Malaria is a significant cause of severe disease and death in pregnant women and newborns, with pathogenesis being associated with expression of a unique variant of the multidomain Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) called VAR2CSA. Here, we characterize the polymorphism of the DBL3X domain of VAR2CSA and identify regions under selective pressure among placental parasites from women living in endemic western Kenya. In addition to significant levels of polymorphism, our analysis reveals evidence for diversification through intra-segmental recombination and novel mutations that likely contributed to the high number of unique VAR2CSA sequence types identified in this study. Interestingly, we also identified a number of critical residues that may be implicated in immune evasion through switching (or toggling) to alternative amino acids, including an arginine residue within the predicted binding pocket in subdomain III, which was previously implicated in binding to placental CSA. Overall, these findings are important for understanding parasite diversity in pregnant women and will be useful for identifying epitopes and variants of DBL3X to be included in a vaccine against placental malaria
Field Evaluation of the Photo-induced Electron Transfer Fluorogenic Primers (PET) Real-time PCR for the Detection of Plasmodium falciparum in Tanzania.
Accurate diagnosis of malaria infections remains challenging, especially in the identification of submicroscopic infections. New molecular diagnostic tools that are inexpensive, sensitive enough to detect low-level infections and suitable in laboratory settings of resource-limited countries are required for malaria control and elimination programmes. Here the diagnostic potential of a recently developed photo-induced electron transfer fluorogenic primer (PET) real-time polymerase chain reaction (PCR) called PET-PCR was investigated. This study aimed to (i) evaluate the use of this assay as a method for the detection of both Plasmodium falciparum and other Plasmodium species infections in a developing country's diagnostic laboratory; and, (ii) determine the assay's sensitivity and specificity compared to a nested 18S rRNA PCR. Samples used in this study were obtained from a previous study conducted in the region of Iringa, Tanzania. A total of 303 samples from eight health facilities in Tanzania were utilized for this evaluation. All samples were screened using the multiplex PET-PCR assay designed to detect Plasmodium genus and P. falciparum initially in laboratory in Tanzania and then repeated at a reference laboratory at the CDC in the USA. Microscopy data was available for all the 303 samples. A subset of the samples were tested in a blinded fashion to find the sensitivity and specificity of the PET-PCR compared to the nested 18S rRNA PCR. Compared to microscopy, the PET-PCR assay was 59% more sensitive in detecting P. falciparum infections. The observed sensitivity and specificity were 100% (95% confidence interval (CI0.95) = 94-100%) and (CI0.95 = 96-100%), respectively, for the PET-PCR assay when compared to nested 18S rRNA PCR. When compared to 18S rRNA PCR, microscopy had a low sensitivity of 40% (CI0.95 = 23-61%) and specificity of 100% (CI0.95 = 96-100%). The PET-PCR results performed in the field laboratory in Tanzania were in 100% concordance with the results obtained at the reference laboratory in the USA. The PET-PCR is a new molecular diagnostic tool with similar performance characteristics as commonly used PCR methods that is less expensive, easy to use, and amiable to large scale-surveillance studies in developing country settings
Efficacy and safety of artemether–lumefantrine, artesunate–amodiaquine, and dihydroartemisinin–piperaquine for the treatment of uncomplicated Plasmodium falciparum malaria in three provinces in Angola, 2017
Background
The Angolan government recommends three artemisinin-based combinations for the treatment of uncomplicated Plasmodium falciparum malaria: artemether–lumefantrine (AL), artesunate–amodiaquine (ASAQ), and dihydroartemisinin–piperaquine (DP). Due to the threat of emerging anti-malarial drug resistance, it is important to periodically monitor the efficacy of artemisinin-based combination therapy (ACT). This study evaluated these medications’ therapeutic efficacy in Benguela, Lunda Sul, and Zaire Provinces.
Methods
Enrollment occurred between March and July 2017. Study participants were children with P. falciparum monoinfection from each provincial capital. Participants received a 3-day course of a quality-assured artemisinin-based combination and were monitored for 28 (AL and ASAQ arms) or 42 days (DP arm). Each ACT was assessed in two provinces. The primary study endpoints were: (1) follow-up without complications and (2) failure to respond to treatment or development of recurrent P. falciparum infection. Parasites from each patient experiencing recurrent infection were genotyped to differentiate new infection from recrudescence of persistent parasitaemia. These parasites were also analysed for molecular markers associated with ACT resistance.
Results
Of 608 children enrolled in the study, 540 (89%) reached a primary study endpoint. Parasitaemia was cleared within 3 days of medication administration in all participants, and no early treatment failures were observed. After exclusion of reinfections, the corrected efficacy of AL was 96% (91–100%, 95% confidence interval) in Zaire and 97% (93–100%) in Lunda Sul. The corrected efficacy of ASAQ was 100% (97–100%) in Benguela and 93% (88–99%) in Zaire. The corrected efficacy of DP was 100% (96–100%) in Benguela and 100% in Lunda Sul. No mutations associated with artemisinin resistance were identified in the pfk13 gene in the 38 cases of recurrent P. falciparum infection. All 33 treatment failures in the AL and ASAQ arms carried pfmdr1 or pfcrt mutations associated with lumefantrine and amodiaquine resistance, respectively, on day of failure.
Conclusions
AL, ASAQ, and DP continue to be efficacious against P. falciparum malaria in these provinces of Angola. Rapid parasite clearance and the absence of genetic evidence of artemisinin resistance are consistent with full susceptibility to artemisinin derivatives. Periodic monitoring of in vivo drug efficacy remains a priority routine activity for Angola
Molecular diagnosis of Plasmodium ovale by photo-induced electron transfer fluorogenic primers: PET-PCR.
Accurate diagnosis of malaria infections continues to be challenging and elusive, especially in the detection of submicroscopic infections. Developing new malaria diagnostic tools that are sensitive enough to detect low-level infections, user friendly, cost effective and capable of performing large scale diagnosis, remains critical. We have designed novel self-quenching photo-induced electron transfer (PET) fluorogenic primers for the detection of P. ovale by real-time PCR. In our study, a total of 173 clinical samples, consisting of different malaria species, were utilized to test this novel PET-PCR primer. The sensitivity and specificity were calculated using nested-PCR as the reference test. The novel primer set demonstrated a sensitivity of 97.5% and a specificity of 99.2% (95% CI 85.2-99.8% and 95.2-99.9% respectively). Furthermore, the limit of detection for P. ovale was found to be 1 parasite/μl. The PET-PCR assay is a new molecular diagnostic tool with comparable performance to other commonly used PCR methods. It is relatively easy to perform, and amiable to large scale malaria surveillance studies and malaria control and elimination programs. Further field validation of this novel primer will be helpful to ascertain the utility for large scale malaria screening programs
One-step PCR: A novel protocol for determination of pfhrp2 deletion status in Plasmodium falciparum.
Histidine-rich protein 2 (HRP2) detecting rapid diagnostic tests (RDTs) have played an important role in enabling prompt malaria diagnosis in remote locations. However, emergence of pfhrp2 deleted parasites is threatening the efficacy of RDTs, and the World Health Organization (WHO) has highlighted surveillance of these deletions as a priority. Nested PCR is used to confirm pfhrp2 deletion but is costly and laborious. Due to spurious amplification of paralogue pfhrp3, the identity of nested exon 1 PCR product must be confirmed by sequencing. Here we describe a new one-step PCR method for detection of pfhrp2. To determine sensitivity and specificity, all PCRs were performed in triplicate. Using photo-induced electron transfer (PET) PCR detecting 18srRNA as true positive, one-step had comparable sensitivity of 95.0% (88.7-98.4%) to nested exon 1, 99.0% (94.6-99.9%) and nested exon 2, 98.0% (93.0-99.8%), and comparable specificity 93.8% (69.8-99.8%) to nested exon 1 100.0% (79.4-100.0%) and nested exon 2, 100.0% (74.4-100.0%). Sequencing revealed that one step PCR does not amplify pfhrp3. Logistic regression models applied to measure the 95% level of detection of the one-step PCR in clinical isolates provided estimates of 133p/μL (95% confidence interval (CI): 3-793p/μL) for whole blood (WB) samples and 385p/μL (95% CI: 31-2133 p/μL) for dried blood spots (DBSs). When considering protocol attributes, the one-step PCR is less expensive, faster and more suitable for high throughput. In summary, we have developed a more accurate PCR method that may be ideal for the application of the WHO protocol for investigating pfhrp2 deletions in symptomatic individuals presenting to health care facilities
<i>P</i>. <i>ovale</i> reticulocyte binding protein 2 (<i>rbp-2</i>) sequence alignment.
<p>Both <i>P</i>. <i>ovale curtisi</i> and <i>P</i>. <i>ovale wallikeri</i> sequences were aligned using Geneious software program in order to select a conserved region for the two <i>P</i>. <i>ovale</i> subspecies. Cytosine is labelled purple, adenine pink, guanine yellow and thymine green. The forward (PoRBP2FWD) and reverse (PoRBP2REV) primers are denoted in dark and light green boxes, respectively.</p
Oligonucleotide primer sequences used in this study.
<p>Oligonucleotide primer sequences used in this study.</p
Novel <i>P</i>. <i>ovale</i> primers only amplify <i>P</i>. <i>ovale</i> and not the other human-infecting species.
<p><i>P</i>. <i>falciparum</i>, <i>P</i>. <i>vivax</i>, <i>P</i>. <i>malariae</i>, <i>P</i>. <i>knowlesi</i>, <i>P</i>. <i>ovale curtisi</i>, <i>P</i>. <i>ovale wallikeri</i> DNA samples were utilized for primer specificity testing. Only the positive control (a known <i>P</i>. <i>ovale</i> sample), <i>P</i>. <i>ovale curtisi</i> and <i>P</i>. <i>ovale wallikeri</i> were amplified using our primers (amplification plots with Ct values of 25.57, 33.38 and 35.2 respectively). No amplification (flat lines) was noted for the other species and the no template control (NTC).</p
Restriction enzyme digestion of host DNA enhances universal detection of parasitic pathogens in blood via targeted amplicon deep sequencing
Abstract Background Targeted amplicon deep sequencing (TADS) of the 16S rRNA gene is commonly used to explore and characterize bacterial microbiomes. Meanwhile, attempts to apply TADS to the detection and characterization of entire parasitic communities have been hampered since conserved regions of many conserved parasite genes, such as the 18S rRNA gene, are also conserved in their eukaryotic hosts. As a result, targeted amplification of 18S rRNA from clinical samples using universal primers frequently results in competitive priming and preferential amplification of host DNA. Here, we describe a novel method that employs a single pair of universal primers to capture all blood-borne parasites while reducing host 18S rRNA template and enhancing the amplification of parasite 18S rRNA for TADS. This was achieved using restriction enzymes to digest the 18S rRNA gene at cut sites present only in the host sequence prior to PCR amplification. Results This method was validated against 16 species of blood-borne helminths and protozoa. Enzyme digestion prior to PCR enrichment and Illumina amplicon deep sequencing led to a substantial reduction in human reads and a corresponding 5- to 10-fold increase in parasite reads relative to undigested samples. This method allowed for discrimination of all common parasitic agents found in human blood, even in cases of multi-parasite infection, and markedly reduced the limit of detection in digested versus undigested samples. Conclusions The results herein provide a novel methodology for the reduction of host DNA prior to TADS and establish the validity of a next-generation sequencing-based platform for universal parasite detection
- …