24 research outputs found

    Reduction of Allergenicity of Litchi chinensis Flowers Pollen Protein Conjugated with Polysaccharide by Maillard Reaction

    Get PDF
    Background: Allergy to pollen from gymnosperms is well documented in the west. The objective was to define the allergologic protein from Litchi chinensis (Litchi) pollen and conjugate the protein with polysaccharides by Maillard reaction to reduce the allergic effect of that protein. Methods: Total soluble proteins were extracted from the pollen of Litchi flower pollen and subjected to ammonium sulphate precipitation at 80% saturation. Pollen antigen from Litchi chinensis (Litchi) was prepared by gel cutting method and characterized by biochemical and designated by LFPP. The homogeneity of this protein was demonstrated by a single band on SDS-PAGE. The protein then conjugated with galactomannan through Maillard Reaction. The resulting purified pollen protein and conjugated protein were administered to the Swiss albino mice as amount of 5.8mg/kg body weight. Results: The total protein was then separated on a 12% SDS-Polyacrylamide gel which revealed 5 bands between molecular weight range of 29kDa and 69kDa. Each band was recovered from the gel by electroelution and sent for skin tests. 28kDa proteins was the only allergenic protein while others were not shown reactivity in patients. Intraperitoneal injection of the purified protein (LFPP) caused a significant rise in the levels of neutrophils (38-81%) and eosinophils (3-14%) compared to control (P<0.001) whereas conjugated protein caused only a 2% increase of both neutrophils and eosinophils level. On the other hand treatment with LFPP-galactomannan conjugate causes no such change in physical appearance with eosinophils and neutrophils level. Conclusion: The present study demonstrates that the protein extracted and purified from Litchi flowers pollen has been recognized as a new allergen from Bangladesh for the first time and the allergic effects can be reduced by conjugation with polysaccharides

    Characterization of a catalyst-based conversion technique to measure total particulate nitrogen and organic carbon and comparison to a particle mass measurement instrument

    Get PDF
    The chemical composition of aerosol particles is a key aspect in determining their impact on the environment. For example, nitrogen-containing particles impact atmospheric chemistry, air quality, and ecological N deposition. Instruments that measure total reactive nitrogen (Nr Combining double low line all nitrogen compounds except for N2 and N2O) focus on gas-phase nitrogen and very few studies directly discuss the instrument capacity to measure the mass of Nr-containing particles. Here, we investigate the mass quantification of particle-bound nitrogen using a custom Nr system that involves total conversion to nitric oxide (NO) across platinum and molybdenum catalysts followed by NOĝ\u27O3 chemiluminescence detection. We evaluate the particle conversion of the Nr instrument by comparing to mass-derived concentrations of size-selected and counted ammonium sulfate ((NH4)2SO4), ammonium nitrate (NH4NO3), ammonium chloride (NH4Cl), sodium nitrate (NaNO3), and ammonium oxalate ((NH4)2C2O4) particles determined using instruments that measure particle number and size. These measurements demonstrate Nr-particle conversion across the Nr catalysts that is independent of particle size with 98ĝ€±ĝ€10ĝ€% efficiency for 100-600ĝ€nm particle diameters. We also show efficient conversion of particle-phase organic carbon species to CO2 across the instrument\u27s platinum catalyst followed by a nondispersive infrared (NDIR) CO2 detector. However, the application of this method to the atmosphere presents a challenge due to the small signal above background at high ambient levels of common gas-phase carbon compounds (e.g., CO2). We show the Nr system is an accurate particle mass measurement method and demonstrate its ability to calibrate particle mass measurement instrumentation using single-component, laboratory-generated, Nr-containing particles below 2.5ĝ€μm in size. In addition we show agreement with mass measurements of an independently calibrated online particle-into-liquid sampler directly coupled to the electrospray ionization source of a quadrupole mass spectrometer (PILS-ESI/MS) sampling in the negative-ion mode. We obtain excellent correlations (R2ĝ€Combining double low line 0.99) of particle mass measured as Nr with PILS-ESI/MS measurements converted to the corresponding particle anion mass (e.g., nitrate, sulfate, and chloride). The Nr and PILS-ESI/MS are shown to agree to within ĝ1/4ĝ€6ĝ€% for particle mass loadings of up to 120ĝ€μgĝ€mĝ\u273. Consideration of all the sources of error in the PILS-ESI/MS technique yields an overall uncertainty of ±20ĝ€% for these single-component particle streams. These results demonstrate the Nr system is a reliable direct particle mass measurement technique that differs from other particle instrument calibration techniques that rely on knowledge of particle size, shape, density, and refractive index

    Rate Coefficients for Reactions of NO 3

    No full text

    Uptake of HNO<sub>3</sub> on Aviation Kerosene and Aircraft Engine Soot: Influences of H<sub>2</sub>O or/and H<sub>2</sub>SO<sub>4</sub>

    No full text
    The uptake of HNO<sub>3</sub> on aviation kerosene soot (TC-1 soot) was studied in the absence and presence of water vapor at 295 and 243 K. The influence of H<sub>2</sub>SO<sub>4</sub> coating of the TC-1 soot surface on HNO<sub>3</sub> uptake was also investigated. Only reversible uptake of HNO<sub>3</sub> was observed. HONO and NO<sub>2</sub>, potential products of reactive uptake of HNO<sub>3</sub>, were not observed under any conditions studied here. The uptake of nitric acid increased slightly with relative humidity (RH). Coating of the TC-1 soot surface with sulfuric acid decreased the uptake of HNO<sub>3</sub> and did not lead to displacement of H<sub>2</sub>SO<sub>4</sub> from the soot surface. A limited set of measurements was carried out on soot generated by aircraft engine combustor (E-soot) with results similar to those on TC-1 soot. The influence of water on HNO<sub>3</sub> uptake on E-soot appeared to be more pronounced than on TC-1 soot. Our results suggest that HNO<sub>3</sub> loss in the upper troposphere due to soot is not significant except perhaps in aircraft exhaust plumes. Our results also suggest that HNO<sub>3</sub> is not converted to either NO<sub>2</sub> or HONO upon its uptake on soot in the atmosphere
    corecore