22 research outputs found

    Effects of Developmental Exposure to 2,2′,4,4′,5-Pentabromodiphenyl Ether (PBDE-99) on Sex Steroids, Sexual Development, and Sexually Dimorphic Behavior in Rats

    Get PDF
    Increasing concentrations of polybrominated flame retardants, including polybrominated diphenyl ethers (PBDEs), in breast milk cause concern about possible developmental effects in nursed babies. Because previous studies in rats have indicated effects on sex steroids and sexually dimorphic behavior after maternal exposure to polychlorinated biphenyls (PCBs), our goal in the present study was to determine if developmental exposure to 2,2′,4,4′,5-pentabromodiphenyl ether (PBDE-99) induces similar endocrine-mediated effects. Pregnant rats were exposed to vehicle or PBDE-99 (1 or 10 mg/kg body weight, daily during gestational days 10–18). For comparison, we also included a group exposed to the technical PCB mixture Aroclor 1254 (30 mg/kg body weight, daily). PBDE exposure resulted in pronounced decreases in circulating sex steroids in male offspring at weaning and in adulthood. Female offspring were less affected. Anogenital distance was reduced in male offspring. Puberty onset was delayed in female offspring at the higher dose level, whereas a slight acceleration was detected in low-dose males. The number of primordial/primary ovarian follicles was reduced in females at the lower dose, whereas decline of secondary follicles was more pronounced at the higher dose. Sweet preference was dose-dependently increased in PBDE-exposed adult males, indicating a feminization of this sexually dimorphic behavior. Aroclor 1254 did not alter sweet preference and numbers of primordial/primary and secondary follicles but it did affect steroid concentrations in males and sexual development in both sexes. PBDE concentrations in tissues of dams and offspring were highest on gestational day 19. These results support the hypothesis that PBDEs are endocrine-active compounds and interfere with sexual development and sexually dimorphic behavior

    Developmental Exposure to Low-Dose PBDE-99: Effects on Male Fertility and Neurobehavior in Rat Offspring

    Get PDF
    In utero exposure to a single low dose of 2,2′,4,4′,5-pentabromodiphenyl ether (PBDE-99) disrupts neurobehavioral development and causes permanent effects on the rat male reproductive system apparent in adulthood. PBDEs, a class of flame retardants, are widely used in every sector of modern life to prevent fire. They are persistent in the environment, and increasing levels of PBDEs have been found in biota and human breast milk. In the present study we assessed the effects of developmental exposure to one of the most persistent PBDE congeners (PBDE-99) on juvenile basal motor activity levels and adult male reproductive health. Wistar rat dams were treated by gavage on gestation day 6 with a single low dose of 60 or 300 μg PBDE-99/kg body weight (bw). In offspring, basal locomotor activity was evaluated on postnatal days 36 and 71, and reproductive performance was assessed in males at adulthood. The exposure to low-dose PBDE-99 during development caused hyperactivity in the offspring at both time points and permanently impaired spermatogenesis by the means of reduced sperm and spermatid counts. The doses used in this study (60 and 300 μg/kg bw) are relevant to human exposure levels, being approximately 6 and 29 times, respectively, higher than the highest level reported in human breast adipose tissue. This is the lowest dose of PBDE reported to date to have an in vivo toxic effect in rodents and supports the premise that low-dose studies should be encouraged for hazard identification of persistent environmental pollutants

    In Vivo Effects of Bisphenol A in Laboratory Rodent Studies

    Get PDF
    Concern is mounting regarding the human health and environmental effects of bisphenol A (BPA), a high-production-volume chemical used in synthesis of plastics. We have reviewed the growing literature on effects of low doses of BPA, below 50 mg/kg/day, in laboratory exposures with mammalian model organisms. Many, but not all, effects of BPA are similar to effects seen in response to the model estrogens diethylstilbestrol and ethinylestradiol. For most effects, the potency of BPA is approximately 10 to 1,000-fold less than that of diethylstilbestrol or ethinylestradiol. Based on our review of the literature, a consensus was reached regarding our level of confidence that particular outcomes occur in response to low-dose BPA exposure. We are confident that adult exposure to BPA affects the male reproductive tract, and that long-lasting, organizational effects in response to developmental exposure to BPA occur in the brain, the male reproductive system, and metabolic processes. We consider it likely, but requiring further confirmation, that adult exposure to BPA affects the brain, the female reproductive system, and the immune system, and that developmental effects occur in the female reproductive system

    Developmental Exposure to Low-Dose PBDE-99: Effects on Male Fertility and Neurobehavior in Rat Offspring-0

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Developmental Exposure to Low-Dose PBDE-99: Effects on Male Fertility and Neurobehavior in Rat Offspring"</p><p>Environmental Health Perspectives 2004;113(2):149-154.</p><p>Published online 4 Nov 2004</p><p>PMCID:PMC1277857.</p><p>This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original DOI.</p

    Developmental Exposure to Low-Dose PBDE-99: Effects on Male Fertility and Neurobehavior in Rat Offspring-1

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Developmental Exposure to Low-Dose PBDE-99: Effects on Male Fertility and Neurobehavior in Rat Offspring"</p><p>Environmental Health Perspectives 2004;113(2):149-154.</p><p>Published online 4 Nov 2004</p><p>PMCID:PMC1277857.</p><p>This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original DOI.</p

    Influence of vitamin D on key bacterial taxa in infant microbiota in the KOALA Birth Cohort Study.

    No full text
    Vitamin D has immunomodulatory properties giving it the potential to affect microbial colonization of the intestinal tract. We investigated whether maternal vitamin D supplemention, maternal plasma 25-hydroxyvitamin D concentration, or direct supplementation of the infant influences key bacterial taxa within microbiota of one month old infants. Infant and maternal vitamin D supplement use was ascertained via questionnaires. Maternal plasma 25-hydroxyvitamin D was determined at approximately the 36th week of pregnancy. In 913 one month old infants in the prospective KOALA Birth Cohort Study, fecal Bifidobacterium spp., Escherichia coli, Clostridium difficile, Bacteroides fragilis group, Lactobacillus spp. and total bacteria were quantified with real-time polymerase chain reaction assays targeting 16S rRNA gene sequences. The association between vitamin D exposure and prevalence or abundance of a specific bacterial group or species was analyzed using logistic or linear regression, respectively. There was a statistically significant negative linear trend between counts of Bifidobacterium spp. and levels of maternal vitamin D supplementation and maternal 25-hydroxyvitamin D quintiles, respectively. In addition, a positive linear trend between quintile groups and B. fragilis group counts was observed. Lower counts of C. difficile were associated with vitamin D supplementation of breast fed infants whose mothers were more likely to adhere to an alternative lifestyle in terms of, e.g., dietary habits. These data suggest that vitamin D influences the abundance of several key bacterial taxa within the infant microbiota. Given that intestinal microbiotic homeostasis may be an important factor in the prevention of immune mediated diseases and that vitamin D status is a modifiable factor, further investigation of the impact of postnatal vitamin D supplementation should be conducted in older infants
    corecore