18 research outputs found

    Lateral cephalometric analysis of asymptomatic volunteers and symptomatic patients with and without bilateral temporomandibular joint disk displacement

    Get PDF
    Few studies of dentofacial and orthodontic structural relationships relative to temporomandibular joint (TMJ) dysfunction have been reported. We undertook this investigation to determine any correlation of orthodontic and dentofacial characteristics with TMJ bilateral disc displacement. The population of patients was selected from a TMJ clinic where a control group of asymptomatic volunteers had been previously established and standardized. Differences in skeletal structural features were determined among three study groups: (1) asymptomatic volunteers with no TMJ disk displacement, (2) symptomatic patients with no TMJ disc displacement, and (3) symptomatic patients with bilateral TMJ disk displacement. Thirty-two asymptomatic volunteers without disk displacement (25 female, 7 male) were compared with the same number each of symptomatic patients without TMJ disk displacement and symptomatic patients with bilateral TMJ disk displacement. All subjects had undergone a standardized clinical examination, bilateral TMJ magnetic resonance imaging, and lateral cephalometric radiographic analysis. The groups were matched according to sex, TMJ status, age, and Angle classification of malocclusion. Seventeen lateral cephalometric radiographic cranial base, maxillomandibular, and vertical dimension variables were evaluated and compared among the study groups. The mean angle of SNB, or the intersection of the sella-nasion plane and the nasion–point B line (indicating mandibular retrognathism relative to cranial base), of the symptomatic patients-with-displacement group was significantly smaller than that in the asymptomatic volunteers and symptomatic patients without bilateral disk displacement (p \u3c 0.05). Female subjects showed smaller linear measurements of mandibular length, lower facial height, and total anterior facial height than male subjects in all three groups (p \u3c 0.05). The mean angle of ANB, or the intersection of the nasion–point A and nasion–point B planes (indicating retrognathism of mandible relative to maxilla), was significantly greater in female than in male subjects, in all groups (p \u3c 0.05). Symptomatic patients with bilateral disk displacement had a retropositioned mandible, indicated by a smaller mean SNB angle compared with that in asymptomatic volunteers and symptomatic patients with no disk displacement on either side. Lateral cephalometric radiographic assessment may improve predictability of TMJ disk displacement in orthodontic patients but is not diagnostic; nor does the assessment explain any cause-and-effect relationship. (Am J Orthod Dentofacial Orthop 1998;114:248-55.

    Conditional expression of human β-hexosaminidase in the neurons of Sandhoff disease rescues mice from neurodegeneration but not neuroinflammation

    Get PDF
    This study evaluated whether GM(2) ganglioside storage is necessary for neurodegeneration and neuroinflammation by performing β-hexosaminidase rescue experiments in neurons of HexB(−/−) mice. We developed a novel mouse model, whereby the expression of the human HEXB gene was targeted to neurons of HexB(−/−) mice by the Thy1 promoter. Despite β-hexosaminidase restoration in neurons was sufficient in rescuing HexB(−/−) mice from GM(2) neuronal storage and neurodegeneration, brain inflammation persisted, including the presence of large numbers of reactive microglia/macrophages due to persisting GM(2) presence in this cell type. In conclusion, our results suggest that neuroinflammation is not sufficient to elicit neurodegeneration as long as neuronal function is restored

    Osteoarthritis accelerates and exacerbates Alzheimer's disease pathology in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study was to investigate whether localized peripheral inflammation, such as osteoarthritis, contributes to neuroinflammation and neurodegenerative disease <it>in vivo</it>.</p> <p>Methods</p> <p>We employed the inducible Col1-IL1β<sup>XAT </sup>mouse model of osteoarthritis, in which induction of osteoarthritis in the knees and temporomandibular joints resulted in astrocyte and microglial activation in the brain, accompanied by upregulation of inflammation-related gene expression. The biological significance of the link between peripheral and brain inflammation was explored in the APP/PS1 mouse model of Alzheimer's disease (AD) whereby osteoarthritis resulted in neuroinflammation as well as exacerbation and acceleration of AD pathology.</p> <p>Results</p> <p>Induction of osteoarthritis exacerbated and accelerated the development of neuroinflammation, as assessed by glial cell activation and quantification of inflammation-related mRNAs, as well as Aβ pathology, assessed by the number and size of amyloid plaques, in the APP/PS1; Col1-IL1β<sup>XAT </sup>compound transgenic mouse.</p> <p>Conclusion</p> <p>This work supports a model by which peripheral inflammation triggers the development of neuroinflammation and subsequently the induction of AD pathology. Better understanding of the link between peripheral localized inflammation, whether in the form of osteoarthritis, atherosclerosis or other conditions, and brain inflammation, may prove critical to our understanding of the pathophysiology of disorders such as Alzheimer's, Parkinson's and other neurodegenerative diseases.</p

    HIGH-POWER LASER DEVELOPMENT AND EXPERIMENTAL APPLICATIONS TO X-RAY LASERS, AND SHORT PULSE ENERGY-TRANSPORT

    No full text
    University research in the UK with high power lasers is carried out at the SERC's Central Laser Facility with a multi-terawatt neodymium glass laser, VULCAN, and a developmental KrF laser, SPRITE. These systems are briefly described together with the design of a new KrF laser to supersede VULCAN. The new laser design, SUPERSPRITE, is based on optical and Raman multiplexing which is being developed with the present SPRITE system. The specification of SUPERSPRITE is for 3.5 kJ in 1 ns and a peak power of 300 TW in short pulses. The new technology is seen as highly cost effective in relation to neodymium glass lasers. A resume of the development of XUV lasers in the UK in collaboration with laboratories overseas is given. The physics of energy transport in short pulses is fundamental to the extrapolation of recombination lasers to shorter wavelengths and is being studied from a more basic standpoint using both the VULCAN and SPRITE facilities. Some details of this work are given
    corecore