85 research outputs found

    Overexpression of matrix-metalloproteinase-9 in human breast cancer: a potential favourable indicator in node-negativeatients

    Get PDF
    Matrix metalloprotease-9 (MMP-9; 92 kDa type IV collaganase, gelatinase B) is regarded as, important for degradation of the basement membrane and extracellular matrix during cancer invasion and other tissue-remodelling events. In this study we evaluate the prognostic value of MMP-9, by immunoperoxidase staining in a series of 210 breast cancer tissues. The results were quantitated using the HSCORE system, which consider both staining intensity and the percentage of cells stained at given intensities. MMP-9 status was compared with the concentration of cytosolic Cathepsin-D and with other established prognostic factors, in terms of disease free survival and overall survival. The median follow-up period was 62 months. MMP-9 staining was observed primarily in cancer cells, and to a lesser degree in surrounding stromal cells. MMP-9 expression was not detected in normal breast tissue. Levels of MMP-9 expression below the cut-off point were more frequently observed in larger (P = 0.014), invasive ductal histologic (P = 0.037), progesterone receptor (PR)-negative and PR-strong positive tumours (P< 0.001), as well as samples belonging to patients with stage III-IV disease (P = 0.009) and age 45–55 years (P = 0.011). In univariate analysis, node-negative breast cancer patients with tumors positive for MMP-9 had a considerable reduction in risk for relapse (RR = 0.45;P = 0.039) or death (RR = 0.32;P = 0.009). Multivariate analysis indicated that MMP-9 status was an independent favourable predictor of OS (RR = 0.47;P = 0.034) in node-negative but not in node-positive patients. Our results suggest that MMP-9 may be an independent favourable prognostic factor in node-negative breast cancer patients. The overexpression of MMP-9 in breast cancer may be also used as a marker to subdivide node negative breast cancer patients in order to determine the optimal treatment modality. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Predictions for the future of kallikrein-related peptidases in molecular diagnostics

    Get PDF
    Kallikrein-related peptidases (KLKs) form a cancer-related ensemble of serine proteases. This multigene family hosts the most widely used cancer biomarker that is PSA-KLK3, with millions of tests performed annually worldwide. The present report provides an overview of the biomarker potential of the extended KLK family (KLK1-KLK15) in various disease settings and envisages approaches that could lead to additional KLK-driven applications in future molecular diagnostics. Particular focus is given on the inclusion of KLKs into multifaceted cancer biomarker panels that provide enhanced diagnostic, prognostic and/or predictive accuracy in several human malignancies. Such panels have been described so far for prostate, ovarian, lung and colorectal cancers. The role of KLKs as biomarkers in non-malignant disease settings, such as Alzheimer’s disease and multiple sclerosis, is also commented upon. Predictions are given on the challenges and future directions regarding clinically oriented KLK research

    Cathepsin D protects colorectal cancer cells from acetate-induced apoptosis through autophagy-independent degradation of damaged mitochondria

    Get PDF
    Acetate is a short-chain fatty acid secreted by Propionibacteria from the human intestine, known to induce mitochondrial apoptotic death in colorectal cancer (CRC) cells. We previously established that acetate also induces lysosome membrane permeabilization in CRC cells, associated with release of the lysosomal protease cathepsin D (CatD), which has a well-established role in the mitochondrial apoptotic cascade. Unexpectedly, we showed that CatD has an antiapoptotic role in this process, as pepstatin A (a CatD inhibitor) increased acetate-induced apoptosis. These results mimicked our previous data in the yeast system showing that acetic acid activates a mitochondria-dependent apoptosis process associated with vacuolar membrane permeabilization and release of the vacuolar protease Pep4p, ortholog of mammalian CatD. Indeed, this protease was required for cell survival in a manner dependent on its catalytic activity and for efficient mitochondrial degradation independently of autophagy. In this study, we therefore assessed the role of CatD in acetate-induced mitochondrial alterations. We found that, similar to acetic acid in yeast, acetate-induced apoptosis is not associated with autophagy induction in CRC cells. Moreover, inhibition of CatD with small interfering RNA or pepstatin A enhanced apoptosis associated with higher mitochondrial dysfunction and increased mitochondrial mass. This effect seems to be specific, as inhibition of CatB and CatL with E-64d had no effect, nor were these proteases significantly released to the cytosol during acetate-induced apoptosis. Using yeast cells, we further show that the role of Pep4p in mitochondrial degradation depends on its protease activity and is complemented by CatD, indicating that this mechanism is conserved. In summary, the clues provided by the yeast model unveiled a novel CatD function in the degradation of damaged mitochondria when autophagy is impaired, which protects CRC cells from acetate-induced apoptosis. CatD inhibitors could therefore enhance acetate-mediated cancer cell death, presenting a novel strategy for prevention or therapy of CRC.FEDER through POFC – COMPETE and by Fundação para a Ciência e Tecnologia through projects PEst-OE/BIA/UI4050/2014 and FCT ANR/BEX-BCM/0175/201

    Expression of human Kallikrein 14 (KLK14) in breast cancer is associated with higher tumour grades and positive nodal status

    Get PDF
    Human kallikrein 14 (KLK14) is a steroid hormone-regulated member of the tissue kallikrein family of serine proteases, for which a prognostic and diagnostic value in breast cancer has been suggested. To further characterise the value of KLK14 as a breast tumour marker, we have carefully analysed KLK14 expression in normal breast tissue and breast cancer both on the RNA level by real-time RT-PCR (n=39), and on the protein level (n=127) using a KLK14-specific antibody for immunohistochemistry. We correlated KLK14 protein expression data with available clinico-pathological parameters (mean follow-up time was 55 months) including patient prognosis. KLK14 RNA expression as quantified by real-time RT-PCR was significantly more abundant in breast tumours compared to normal breast tissue (P=0.027), an issue that had not been clarified recently. Concordantly with the RNA data, cytoplasmic KLK14 protein expression was significantly higher in invasive breast carcinomas compared to normal breast tissues (P=0.003). Furthermore, KLK14 protein expression was associated with higher tumour grade (P=0.041) and positive nodal status (P=0.045) but was not significantly associated with shortened disease-free or overall patient survival time in univariate analyses. We conclude that KLK14 is clearly overexpressed in breast cancer in comparison to normal breast tissues and is positively associated with conventional parameters of tumour aggressiveness, but due to a missing association with survival times, the use of KLK14 immunohistochemistry as a prognostic marker in breast cancer is questionable

    Kallikrein-related peptidase 6 regulates epithelial-to-mesenchymal transition and serves as prognostic biomarker for head and neck squamous cell carcinoma patients

    Get PDF
    Background: Dysregulated expression of Kallikrein-related peptidase 6 (KLK6) is a common feature for many human malignancies and numerous studies evaluated KLK6 as a promising biomarker for early diagnosis or unfavorable prognosis. However, the expression of KLK6 in carcinomas derived from mucosal epithelia, including head and neck squamous cell carcinoma (HNSCC), and its mode of action has not been addressed so far. Methods: Stable clones of human mucosal tumor cell lines were generated with shRNA-mediated silencing or ectopic overexpression to characterize the impact of KLK6 on tumor relevant processes in vitro. Tissue microarrays with primary HNSCC samples from a retrospective patient cohort (n = 162) were stained by immunohistochemistry and the correlation between KLK6 staining and survival was addressed by univariate Kaplan-Meier and multivariate Cox proportional hazard model analysis. Results: KLK6 expression was detected in head and neck tumor cell lines (FaDu, Cal27 and SCC25), but not in HeLa cervix carcinoma cells. Silencing in FaDu cells and ectopic expression in HeLa cells unraveled an inhibitory function of KLK6 on tumor cell proliferation and mobility. FaDu clones with silenced KLK6 expression displayed molecular features resembling epithelial-to-mesenchymal transition, nuclear β-catenin accumulation and higher resistance against irradiation. Low KLK6 protein expression in primary tumors from oropharyngeal and laryngeal SCC patients was significantly correlated with poor progression-free (p = 0.001) and overall survival (p < 0.0005), and served as an independent risk factor for unfavorable clinical outcome. Conclusions: In summary, detection of low KLK6 expression in primary tumors represents a promising tool to stratify HNSCC patients with high risk for treatment failure. These patients might benefit from restoration of KLK6 expression or pharmacological targeting of signaling pathways implicated in EMT

    mRNA quantification and clinical evaluation of telomerase reverse transcriptase subunit (hTERT) in intracranial tumours of patients in the island of Crete

    Get PDF
    Telomerase is a reverse transcriptase that maintains telomeres by adding telomeric TTAGGG repeats to the ends of human chromosomes. The aim of this study was to evaluate quantitatively the mRNA expression of telomerase catalytic subunit (hTERT) in different types of intracranial tumours in relation to their histologic pattern and grade and correlate it with progression-free (PFS) and overall survival (OS) of patients. Human telomerase reverse transcriptase mRNA levels were estimated by the use of real time RT–PCR in 68 samples of intracranial tumours. It revealed statistical correlation between hTERT mRNA expression levels and the grade of the tumours (P<0.001). Patients having negative expression of hTERT mRNA had statistically longer PFS (P=0.031) and OS (P=0.047). Cox univariate regression analysis revealed that hTERT mRNA-positive patients had a high and statistically significant risk of relapse (hazard ratio (HR) of 2.24 and P=0.038). In the Cox multivariate regression model, the levels of hTERT mRNA were adjusted for tumour grade and patients age, and since there was statistically significant relationship between the levels of hTERT mRNA and the grade of the tumours (P=0.003 or P=0.006, respectively), hTERT mRNA levels could not be considered as an independent prognostic factor for PFS or OS

    Characterization of global transcription profile of normal and HPV-immortalized keratinocytes and their response to TNF treatment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Persistent infection by high risk HPV types (e.g. HPV-16, -18, -31, and -45) is the main risk factor for development of cervical intraepithelial neoplasia and cervical cancer. Tumor necrosis factor (TNF) is a key mediator of epithelial cell inflammatory response and exerts a potent cytostatic effect on normal or HPV16, but not on HPV18 immortalized keratinocytes. Moreover, several cervical carcinoma-derived cell lines are resistant to TNF anti-proliferative effect suggesting that the acquisition of TNF-resistance may constitute an important step in HPV-mediated carcinogenesis. In the present study, we compared the gene expression profiles of normal and HPV16 or 18 immortalized human keratinocytes before and after treatment with TNF for 3 or 60 hours.</p> <p>Methods</p> <p>In this study, we determined the transcriptional changes 3 and 60 hours after TNF treatment of normal, HPV16 and HPV18 immortalized keratinocytes by microarray analysis. The expression pattern of two genes observed by microarray was confirmed by Northern Blot. NF-κB activation was also determined by electrophoretic mobility shift assay (EMSA) using specific oligonucleotides and nuclear protein extracts.</p> <p>Results</p> <p>We observed the differential expression of a common set of genes in two TNF-sensitive cell lines that differs from those modulated in TNF-resistant ones. This information was used to define genes whose differential expression could be associated with the differential response to TNF, such as: <it>KLK7 </it>(<it>kallikrein 7</it>), <it>SOD2 </it>(<it>superoxide dismutase 2</it>), <it>100P </it>(<it>S100 calcium binding protein P</it>), <it>PI3 </it>(<it>protease inhibitor 3, skin-derived</it>), <it>CSTA </it>(<it>cystatin A</it>), <it>RARRES1 </it>(<it>retinoic acid receptor responder 1</it>), and <it>LXN </it>(<it>latexin</it>). The differential expression of the <it>KLK7 </it>and <it>SOD2 </it>transcripts was confirmed by Northern blot. Moreover, we observed that <it>SOD2 </it>expression correlates with the differential NF-κB activation exhibited by TNF-sensitive and TNF-resistant cells.</p> <p>Conclusion</p> <p>This is the first in depth analysis of the differential effect of TNF on normal and HPV16 or HPV18 immortalized keratinocytes. Our findings may be useful for the identification of genes involved in TNF resistance acquisition and candidate genes which deregulated expression may be associated with cervical disease establishment and/or progression.</p

    The PRMT1 gene expression pattern in colon cancer

    Get PDF
    The methylation of arginine has been implicated in many cellular processes, such as regulation of transcription, mRNA splicing, RNA metabolism and transport. The enzymes responsible for this modification are the protein arginine methyltransferases. The most abundant methyltransferase in human cells is protein arginine methyltransferase 1. Methylation processes appear to interfere in the emergence of several diseases, including cancer. During our study, we examined the expression pattern of protein arginine methyltransferase 1 gene in colon cancer patients. The emerging results showed that the expression of one of the gene variants is associated with statistical significant probability to clinical and histological parameters, such as nodal status and stage. This is a first attempt to acquire an insight on the possible relation of the expression pattern of protein arginine methyltransferase 1 and colon cancer progression
    • …
    corecore