28 research outputs found

    Measuring nasal bacterial load and its association with otitis media

    Get PDF
    BACKGROUND: Nasal colonisation with otitis media (OM) pathogens, particularly Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis, is a precursor to the onset of OM. Many children experience asymptomatic nasal carriage of these pathogens whereas others will progress to otitis media with effusion (OME) or suppurative OM. We observed a disparity in the prevalence of suppurative OM between Aboriginal children living in remote communities and non-Aboriginal children attending child-care centres; up to 60% and <1%, respectively. This could not be explained by the less dramatic difference in rates of carriage of respiratory bacterial pathogens (80% vs 50%, respectively). In this study, we measured nasal bacterial load to help explain the different propensity for suppurative OM in these two populations. METHODS: Quantitative measures (colony counts and real-time quantitative PCR) of the respiratory pathogens S. pneumoniae, H. influenzae and M. catarrhalis, and total bacterial load were analysed in nasal swabs from Aboriginal children from remote communities, and non-Aboriginal children attending urban child-care centres. RESULTS: In both populations nearly all swabs were positive for at least one of these respiratory pathogens. Using either quantification method, positive correlations between bacterial load and ear state (no OM, OME, or suppurative OM) were observed. This relationship held for single and combined bacterial respiratory pathogens, total bacterial load, and the proportion of respiratory pathogens to total bacterial load. Comparison of Aboriginal and non-Aboriginal children, all with a diagnosis of OME, demonstrated significantly higher loads of S. pneumoniae and M. catarrhalis in the Aboriginal group. The increased bacterial load despite similar clinical condition may predict persistence of middle ear effusions and progression to suppurative OM in the Aboriginal population. Our data also demonstrated the presence of PCR-detectable non-cultivable respiratory pathogens in 36% of nasal swabs. This may have implications for the pathogenesis of OM including persistence of infection despite aggressive therapies. CONCLUSION: Nasal bacterial load was significantly higher among Aboriginal children and may explain their increased risk of suppurative OM. It was also positively correlated with ear state. We believe that a reduction in bacterial load in high-risk populations may be required before dramatic reductions in OM can be achieved

    Osmoprotection of Escherichia coli by ectoine: uptake and accumulation characteristics.

    No full text
    Ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid) is a cyclic amino acid, identified as a compatible solute in moderately halophilic bacteria. Exogenously provided ectoine was found to stimulate growth of Escherichia coli in media of inhibitory osmotic strength. The stimulation was independent of any specific solute, electrolyte or nonelectrolyte. It is accumulated in E. coli cells proportionally to the osmotic strength of the medium, and it is not metabolized. Its osmoprotective ability was as potent as that of glycine betaine. The ProP and ProU systems are both involved in ectoine uptake and accumulation in E. coli. ProP being the main system for ectoine transport. The intracellular ectoine pool is regulated by both influx and efflux systems

    Osmoadaptative responses in the rhizobia nodulating Acacia isolated from south-eastern Moroccan Sahara.

    No full text
    International audienceFour strains of rhizobia nodulating Acacia were isolated from the Moroccan desert soil by trapping with seedlings of Acacia gummifera and Acacia raddiana, and were studied for their ability to tolerate high salinity and dryness conditions. The strains MDSMC 2, MDSMC 18 and MDSMC 50 were halotolerant (they tolerated up to 1 M NaCl) and they accumulated glutamate and mannosucrose. The synthesis of the latter solute, which is the major endogenous osmolyte, is partially repressed in the presence of glycine betaine. The strain MDSMC 34 was less halotolerant (growth inhibited by a concentration greater than 0.5 M NaCl), and accumulated trehalose (as the main endogenous osmolyte) and glutamate. Rhizobia from the Moroccan desert soil were highly resistant to desiccation and their tolerance to dryness was stimulated by osmotic pretreatment. Thus, the accumulation of mannosucrose or trehalose by desert rhizobia represents both an osmoadaptative response and a part of a desiccation tolerance mechanism

    Osmoadaptation in rhizobia: ectoine-induced salt tolerance.

    No full text
    After having shown that ectoine (a tetrahydropyrimidine) displays osmoprotective properties towards Escherichia coli (M. Jebbar, R. Talibart, K. Gloux, T. Bernard, and Blanco, J. Bacteriol. 174:5027-5035, 1992), we have investigated the involvement of this molecule in the osmotic adaptation of Rhizobium meliloti. Ectoine appeared almost as effective as glycine betaine in improving the growth of R. meliloti under adverse osmotic conditions (0.5 M NaCl). Moreover, improvement of growth of rhizobial strains insensitive to glycine betaine was also observed. Ectoine transport proved inducible, periplasmic protein dependent, and, as shown by competition experiments, distinct from the transport of glycine betaine. Medium osmolarity had little effect on the uptake characteristics, since the rate of influx increased from 12 to only 20 nmol min-1 mg of protein-1 when NaCl concentrations were raised from 0 to 0.3 or 0.5 M, with a constant of transport of 80 microM. Natural-abundance 13C-nuclear magnetic resonance and radiolabelling assays showed that ectoine, unlike glycine betaine, is not intracellularly accumulated and, as a consequence, does not repress the synthesis of endogenous compatible solutes (glutamate, N-acetylglutaminylglutamine amide, and trehalose). Furthermore, the strong rise in glutamate content in cells osmotically stressed in the presence of ectoine suggests that, instead of being involved in osmotic balance restoration, ectoine should play a key role in triggering the synthesis of endogenous osmolytes. Hence, we believe that there are at least two distinct classes of osmoprotectants: those such as glycine betaine or glutamate, which act as genuine osmolytes, and those such as ectoine, which act as chemical mediators

    Transient Accumulation of Glycine Betaine and Dynamics of Endogenous Osmolytes in Salt-Stressed Cultures of Sinorhizobium meliloti

    No full text
    The fate of exogenously supplied glycine betaine and the dynamics of endogenous osmolytes were investigated throughout the growth cycle of salt-stressed cultures of strains of Sinorhizobium meliloti which differ in their ability to use glycine betaine as a growth substrate, but not as an osmoprotectant. We present (sup13)C nuclear magnetic resonance spectral and radiotracer evidence which demonstrates that glycine betaine is only transiently accumulated as a cytoplasmic osmolyte in young cultures of wild-type strains 102F34 and RCR2011. Specifically, these strains accumulate glycine betaine as a preferred osmolyte which virtually prevents the accumulation of endogenous osmolytes during the lag and early exponential phases of growth. Then, betaine levels in stressed cells decrease abruptly during the second half of the exponential phase. At this stage, the levels of glutamate and the dipeptide N-acetylglutaminylglutamine amide increase sharply so that the two endogenous solutes supplant glycine betaine in the ageing culture, in which it becomes a minor osmolyte because it is progressively catabolized. Ultimately, glycine betaine disappears when stressed cells reach the stationary phase. At this stage, wild-type strains of S. meliloti also accumulate the disaccharide trehalose as a third major endogenous osmolyte. By contrast, glycine betaine is always the dominant osmolyte and strongly suppresses the buildup of endogenous osmolytes at all stages of the growth cycle of a mutant strain, S. meliloti GMI766, which does not catabolize this exogenous osmoprotectant under any growth conditions
    corecore