5 research outputs found

    Uniform Distorted Scene Reduction on Distribution of Colour Cast Correction

    Get PDF
    Scene in the photo occulated by uniform particles distribution can degrade the image quality accidently. State of the art pre-processing methods are able to enhance visibility by employing local and global filters on the image scene. Regardless of air light and transmission map right estimation, those methods unfortunately produce artifacts and halo effects because of uncorrelated problem between the global and local filter’s windows. Besides, previous approaches might abruptly eliminate the primary scene structure of an image like texture and colour. Therefore, this study aims not solely to improve scene image quality via a recovery method but also to overcome image content issues such as the artefacts and halo effects, and finally to reduce the light disturbance in the scene image. We introduce our proposed visibility enhancement method by using joint ambience distribution that improves the colour cast in the image. Furthermore, the method is able to balance the atmospheric light in correspondence to the depth map accordingly. Consequently, our method maintains the image texture structural information by calculating the lighting estimation and maintaining a range of colours simultaneously. The method is tested on images from the Benchmarking Single Image Dehazing research by assessing their clear edge ratio, gradient, range of saturated pixels, and structural similarity metric index. The scene image restoration assessment results show that our proposed method had outperformed resuls from the Tan, Tarel and He methods by gaining the highest score in the structural similarity index and colourfulness measurement. Furthermore, our proposed method also had achieved acceptable gradient ratio and percentage of the number of saturated pixels. The proposed approach enhances the visibility in the images without affecting them structurally

    A Study of Atmospheric Particles Removal in a Low Visibility Outdoor Single Image

    Get PDF
    Maximum limit of human visibility without the assistance of equipment is 1000 m based on International Commission on Illumination. The use of camera in the outdoor for the purpose of navigation, monitoring, remote sensing and robotic movement sometimes may yield images that are interrupted by haze, fog, smoke, steam and water drops. Fog is the random movement of water drops in the air that normally exists in the early morning. This disorder causes a differential image observed experiences low contrast, obscure, and difficult to identify targets. Analysis of the interference image can restore damaged image as a result of obstacles from atmospheric particles or drops of water during image observation. Generally, images with atmospheric particles contain a homogeneous texture like brightness and a heterogeneous texture which is the object that exists in the atmosphere. Pre-processing method based on the dark channel prior statistical measure of contrast vision and prior knowledge, still produces good image quality but less effective to overcome Halo problem or ring light, and strong lighting. This study aims to propel the development of machine vision industry aimed at navigation or monitoring for ground transportation, air or sea

    A Study into the Development of a Light Weight Smart Life Buoy Prototype (LWSLB)

    Get PDF
    Life Buoy, also known as a life preserver, is a crucial safety tool on board any marine ships. The most common and conventional lifesaver is operated manually to save people from drowning, yet this method poses a risk for both the victim and rescuer. Hence, with the help of current technology, a smart lifebuoy has been developed, whereby the rescuer just operates the lifebuoy using remote control. Yet, the existing smart life buoy system has been found heavy and hard to be operated, especially for women, children, and other people with disabilities.This paper focuses on the development of a lightweight smart life buoy system and its characteristics. Arduino Uno R3, Arduino Nano, DC motor 775, Transmitter and Receiver kit were the main components used in the development of the lightweight smart life buoy system (LWSLB). The developed LWSLB system was tested at the National Defence University of Malaysia’ swimming pool due to Covid-19 lockdown, and data such as speed, range of remote connection and battery endurance were obtained. It has been found out that the developed LWSLB weighs just 3.5kg overall compared to Brand S which weighs 13.75kg. However, in terms of speed, Brand S proves to be faster at 4.17m/s compared to LWSLB which exhibits a speed of 1.25m/s
    corecore