148 research outputs found

    Multiple Topoisomerase I (TopoI), Topoisomerase II (TopoII) and Tyrosyl-DNA Phosphodiesterase (TDP) inhibitors in the development of anticancer drugs

    Get PDF
    DNA Topoisomerases (Topos) are ubiquitous nuclear enzymes involved in regulating the topological state of DNA and, in eukaryotic organisms, Topos can be classified into two structurally and functionally different main classes: TopoI and TopoII. Both these enzymes proved to be excellent targets of clinically significant classes of anticancer drugs. Actually, TopoI or II inhibitors show considerable wide spectrum antitumor activities, an important feature to be included in many chemotherapeutic protocols. Despite their clinical efficacy, the use of inhibitors targeting only one of the two enzymes can increase the levels of the other one, favouring the onset of unwanted phenomena such as drug resistance. Therefore, targeting both TopoI and TopoII can reduce the probability of developing resistance, as well as side effects thanks to the use of lower doses, given the synergistic effect of the dual activity. Moreover, since drug resistance is also due to DNA repair systems such as tyrosyl-DNA phosphodiesterases I and II, inhibiting Topoisomerases concomitantly to Tyrosyl-DNA phosphodiesterase enzymes could allow more efficient and safe drugs. This review represents an update of previous works reporting about dual TopoI and TopoII inhibitors, but also an overview of the new strategy regarding the development of derivatives able to simultaneously inhibit Topo and TDP enzymes, with particular attention to structure-affinity relationship studies. The newly collected de-rivatives are described focusing attention on their chemical structures and their biological profiles. The final aim is to highlight the structural requirements necessary for the development of potent multiple modulators of these targets, thus providing new potential antitumor agents for the clinical usage

    TSPO ligand residence time: a new parameter to predict compound neurosteroidogenic efficacy

    Get PDF
    The pharmacological activation of the cholesterol-binding Translocator Protein (TSPO) leads to an increase of endogenous steroids and neurosteroids determining benefic pleiotropic effects in several pathological conditions, including anxiety disorders. The relatively poor relationship between TSPO ligand binding affinities and steroidogenic efficacies prompted us to investigate the time (Residence Time, RT) that a number of compounds with phenylindolylglyoxylamide structure (PIGAs) spends in contact with the target. Here, given the poor availability of TSPO ligand kinetic parameters, a kinetic radioligand binding assay was set up and validated for RT determination using a theoretical mathematical model successfully applied to other ligand-target systems. TSPO ligand RT was quantified and the obtained results showed a positive correlation between the period for which a drug interacts with TSPO and the compound ability to stimulate steroidogenesis. Specifically, the TSPO ligand RT significantly fitted both with steroidogenic efficacy (Emax) and with area under the dose-response curve, a parameter combining drug potency and efficacy. A positive relation between RT and anxiolytic activity of three compounds was evidenced. In conclusion, RT could be a relevant parameter to predict the steroidogenic efficacy and the in vivo anxiolytic action of new TSPO ligands

    Allosterism vs. Orthosterism: Recent Findings and Future Perspectives on A2B AR Physio-Pathological Implications

    Get PDF
    The development of GPCR (G-coupled protein receptor) allosteric modulators has attracted increasing interest in the last decades. The use of allosteric modulators in therapy offers several advantages with respect to orthosteric ones, as they can fine-tune the tissue responses to the endogenous agonist. Since the discovery of the first A1 adenosine receptor (AR) allosteric modulator in 1990, several efforts have been made to develop more potent molecules as well as allosteric modulators for all adenosine receptor subtypes. There are four subtypes of AR: A1, A2A, A2B, and A3. Positive allosteric modulators of the A1 AR have been proposed for the cure of pain. A3 positive allosteric modulators are thought to be beneficial during inflammatory processes. More recently, A2A and A2B AR allosteric modulators have also been disclosed. The A2B AR displays the lowest affinity for its endogenous ligand adenosine and is mainly activated as a consequence of tissue damage. The A2B AR activation has been found to play a crucial role in chronic obstructive pulmonary disease, in the protection of the heart from ischemic injury, and in the process of bone formation. In this context, allosteric modulators of the A2B AR may represent pharmacological tools useful to develop new therapeutic agents. Herein, we provide an up-to-date highlight of the recent findings and future perspectives in the field of orthosteric and allosteric A2B AR ligands. Furthermore, we compare the use of orthosteric ligands with positive and negative allosteric modulators for the management of different pathological conditions

    Long lasting MDM2/Translocator protein modulator: a new strategy for irreversible apoptosis of human glioblastoma cells

    Get PDF
    The development of multi-target drugs and irreversible modulators of deregulated signalling proteins is the major challenge for improving glioblastoma multiforme (GBM) treatment. Reversible single-target drugs are not sufficient to sustain a therapeutic effect over time and may favour the activation of alternative signalling pathways and the onset of resistance phenomena. Thus, a multi-target compound that has a long-lasting mechanism of action might have a greater and longer life span of anti-proliferative activity. Recently, a dual-target indol-3ylglyoxyldipeptide derivative, designed to bind to the Translocator Protein (TSPO) and reactivate p53 function via dissociation from its physiological inhibitor, murine double minute 2 (MDM2), has been developed as a potent GBM pro-apoptotic agent. In this study, this derivative was chemically modified to irreversibly bind MDM2 and TSPO. The new compound elicited a TSPO-mediated mitochondrial membrane dissipation and restored p53 activity, triggering a long-lasting apoptosis of GBM cells. These effects were sustained over time, involved a stable activation of extracellular signal regulated kinases and were specifically observed in cancer cells, in which these protein kinases are deregulated. Dual-targeting and irreversible binding properties combined in the same molecule may represent a useful strategy to overcome the time-limited effects elicited by classical chemotherapies

    Novel positive allosteric modulators of A2B adenosine receptor acting as bone mineralisation promoters

    Get PDF
    Small-molecules acting as positive allosteric modulators (PAMs) of the A2B adenosine receptor (A2B AR) could potentially represent a novel therapeutic strategy for pathological conditions characterised by altered bone homeostasis, including osteoporosis. We investigated a library of compounds (4-13) exhibiting different degrees of chemical similarity with three indole derivatives (1-3), which have been recently identified by us as PAMs of the A2B AR able to promote mesenchymal stem cell differentiation and bone formation. Evaluation of mineralisation activity of 4-13 in the presence and in the absence of the agonist BAY60-6583 allowed the identification of lead compounds with therapeutic potential as anti-osteoporosis agents. Further biological characterisation of one of the most performing compounds, the benzofurane derivative 9, confirmed that such a molecule behaves as PAM of the A2B AR

    The mesenchymal stem cell differentiation to osteoblasts is potentiate by the allosteric modulation of A2B adenosine receptors.

    Get PDF
    The A2B adenosine receptor (A2BAR) has been recently emerged as the major adenosine receptor involved in the mesenchymal stem cell differentiation to osteoblast and bone formation, highlighting this receptor as a new target in bone diseases. In the present study, we characterized a new 3-keto-indole-derivative (KI-7) as the first positive allosteric modulator (PAM) of the human A2B AR in mesenchymal stem cells (MSCs), and we investigated the potential activity of this compound as osteogenic agent. KI-7 was able to increase the effects of A2B AR of both endogenous and orthosteric agonists on the expression of osteogenic markers and on osteoblast mineralization. In the early phase of differentiation program, KI-7 significantly potentiated physiological and A2B agonist-mediated down-regulation of IL-6 release. Conversely, during the late stage of differentiation, when most of the cells have an osteoblast phenotype, KI-7 caused a sustained raise in IL-6 levels and an improvement in osteoblast viability. These data suggest that positive allosteric modulation of A2B AR not only favors MSC commitment to osteoblasts, but also ensures a greater survival of mature osteoblasts. Our study paves the way for a therapeutic use of selective positive allosteric modulators of A2B AR in the control of osteoblast differentiation, bone formation and fracture repair

    Sulfonamides incorporating heteropolycyclic scaffolds show potent inhibitory action against carbonic anhydrase isoforms I, II, IX and XII

    Get PDF
    Three series of polycyclic compounds possessing either primary sulfonamide or carboxylic acid moieties as zinc-binding groups were investigated as inhibitors of four physiologically relevant CA isoforms, the cytosolic hCA I and II, as well as the transmembrane hCA IX and XII. Most of the new sulfonamides reported here showed excellent inhibitory effects against isoforms hCA II, IX and XII, but no highly isoform-selective inhibition profiles. On the other hand, the carboxylates selectively inhibited hCA IX (KIs ranging between 40.8 and 92.7 nM) without inhibiting significantly the other isoforms. Sulfonamides/carboxylates incorporating polycyclic ring systems such as benzothiopyranopyrimidine, pyridothiopyranopyrimidine or dihydrobenzothiopyrano[4,3-c]pyrazole may be considered as interesting candidates for exploring the design of isoform-selective CAIs with various pharmacologic applications

    TSPO-ligands prevent oxidative damage and inflammatory response in C6 glioma cells by neurosteroid synthesis

    Get PDF
    Translocator protein 18 kDa (TSPO) is predominantly located in the mitochondrial outer membrane, playing an important role in steroidogenesis, inflammation, cell survival and proliferation. Its expression in central nervous system, mainly in glial cells, has been found to be upregulated in neuropathology, and brain injury. In this study, we investigated the anti-oxidative and anti-inflammatory effects of a group of TSPO ligands from the N,N-dialkyl-2-phenylindol-3-ylglyoxylamide class (PIGAs), highlighting the involvement of neurosteroids in their pharmacological effects. To this aim we used a well-known in vitro model of neurosteroidogenesis: the astrocytic C6 glioma cell line, where TSPO expression and localization, as well as cell response to TSPO ligand treatment, have been established. All PIGAs reduced l-buthionine-(S,R)-sulfoximine (BSO)-driven cell cytotoxicity and lipid peroxidation. Moreover, an anti-inflammatory effect was observed due to the reduction of inducible nitric oxide synthase and cyclooxygenase-2 induction in LPS/IFNγ challenged cells. Both effects were blunted by aminoglutethimide (AMG), an inhibitor of pregnenolone synthesis, suggesting neurosteroids' involvement in PIGA protective mechanism. Finally, pregnenolone evaluation in PIGA exposed cells revealed an increase in its synthesis, which was prevented by AMG pre-treatment. These findings indicate that these TSPO ligands reduce oxidative stress and pro-inflammatory enzymes in glial cells through the de novo synthesis of neurosteroids, suggesting that these compounds could be potential new therapeutic tools for the treatment of inflammatory-based neuropathologies with beneficial effects possibly comparable to steroids, but potentially avoiding the negative side effects of long-term therapies with steroid hormones

    New insights in the structure-activity relationships of 2-phenylamino-substituted benzothiopyrano[4,3-d]pyrimidines as kinase inhibitors

    Get PDF
    Inhibition of angiogenesis via blocking vascular endothelial growth factor receptor (VEGFR) signaling pathway emerged as an established approach in anticancer therapy. So far, many monoclonal antibodies and ATP-competitive small molecule inhibitors have been clinically validated and approved. In this study, structure-activity relationships (SAR) within the 2-phenylamino-substituted benzothiopyrano[4,3-d]pyrimidine class of kinase inhibitors were further refined by the synthesis and biological evaluation of new compounds 1â\u80\u9321 featuring different substitution patterns on the pendant phenyl moiety, combined with H, OCH3, or Cl at 8-position. Most compounds showed a promising human kinase insert domain receptor (KDR) inhibition profile, with IC50values in the submicromolar/low nanomolar range, and promising antiproliferative activity on human umbilical vein endothelial cells (HUVECs) as well as on a panel of three human tumor cell lines. The angio-kinase selectivity profile was assessed for the most promising compound 16 against a set of six human kinases. Finally, computational studies allowed clarifying at molecular level the interaction pattern established by the compounds with KDR, highlighting key stable cation-Ï\u80 interactions, and thus providing the basis for further designing novel inhibitors
    corecore