8 research outputs found

    Unveiling the antimalarial properties of Terminalia ivorensis (A. Chev) stem bark aqueous extract: In vivo efficacy testing and in silico predictions

    Get PDF
    Due to the spreading resistance to antimalarial drugs, new therapeutics are urgently needed, preferably with novel modes of action. Extracts from Terminalia ivorensis have previously been shown to possess activity in vitro against multidrug-resistant and drug-sensitive strains of Plasmodium falciparum. However, to the best of our knowledge, no scientific study has been published describing the antimalarial potential of these extracts through in vivo efficacy testing. This study aimed to determine the safety and antimalarial efficacy of the T. ivorensis stem bark aqueous extract (TiH2O) in a mouse model using the OECD 423 protocol and the suppressive and curative murine malaria models, and to predict in silico the pharmacokinetic properties and drug-likeness of two major phytochemical constituents. The in vivo antimalarial efficacy was assessed using the P. berghei NK65-infected mice. The TiH2O treatment impact on biochemical parameters was measured using established standard procedures. The pharmacokinetics prediction was achieved through the pkCSM predictor and Swiss ADME. The TiH2O extract was nontoxic in BALB/c mice at a lethal dose of 50 (LD50) > 2000 mg/kg. The TiH2O extract displayed strong antimalarial efficacy with 100% parasitemia suppression at 200 mg/kg b.w. after 4 days of treatment while its oral administration at 400 mg/kg b.w. in the curative model significantly decreased P. berghei parasitemia by 94.07% with a median efficacy dose (ED50) of 96.80 mg/kg. The administration of TiH2O extract restored the histological parameters disrupted by P. berghei, and the transaminase (ALT and AST) activity, creatinine, and bilirubin levels significantly decreased compared to the negative control mice. In silico explorations showed that the main constituents leucodelphidin (leucodelphinidin) and ellagic acid of the TiH2O extract have drug-like properties, thus indicating that T. ivorensis might constitute a promising source of antimalarial chemical entities with good pharmacokinetics and drug-like properties. The results obtained further corroborated the preliminary in vitro antiplasmodial studies of T. ivorensis stem bark aqueous extract. The metabolome of TiH2O extract should be further profiled in the prospects of characterizing novel natural product scaffolds to support antimalarial drug discovery

    In vitro antiplasmodial activity-directed investigation and UPLC–MS fingerprint of promising extracts and fractions from Terminalia ivorensis A. Chev. and Terminalia brownii Fresen.

    Get PDF
    Please read abstract in the article.The Grand Challenges Africa programme is supported by the African Academy of Sciences (AAS), Bill & Melinda Gates Foundation (BMGF), Medicines for Malaria Venture (MMV), and Drug Discovery and Development Centre of University of Cape Town (H3D).https://www.elsevier.com/locate/jethpharm2023-07-09hj2023Chemistr

    Repurposing DrugBank compounds as potential Plasmodium falciparum class 1a aminoacyl tRNA synthetase multi-stage pan-inhibitors with a specific focus on mitomycin

    No full text
    Plasmodium falciparum aminoacyl tRNA synthetases (PfaaRSs) are potent antimalarial targets essential for proteome fidelity and overall parasite survival in every stage of the parasite's life cycle. So far, some of these proteins have been singly targeted yielding inhibitor compounds that have been limited by incidences of resistance which can be overcome via pan-inhibition strategies. Hence, herein, for the first time, we report the identification and in vitro antiplasmodial validation of Mitomycin (MMC) as a probable pan-inhibitor of class 1a (arginyl(A)-, cysteinyl(C), isoleucyl(I)-, leucyl(L), methionyl(M), and valyl(V)-) PfaaRSs which hypothetically may underlie its previously reported activity on the ribosomal RNA to inhibit protein translation and biosynthesis. We combined multiple in silico structure-based discovery strategies that first helped identify functional and druggable sites that were preferentially targeted by the compound in each of the plasmodial proteins: Ins1-Ins2 domain in Pf-ARS; anticodon binding domain in Pf-CRS; CP1-editing domain in Pf-IRS and Pf-MRS; C-terminal domain in Pf-LRS; and CP-core region in Pf-VRS. Molecular dynamics studies further revealed that MMC allosterically induced changes in the global structures of each protein. Likewise, prominent structural perturbations were caused by the compound across the functional domains of the proteins. More so, MMC induced systematic alterations in the binding of the catalytic nucleotide and amino acid substrates which culminated in the loss of key interactions with key active site residues and ultimate reduction in the nucleotide-binding affinities across all proteins, as deduced from the binding energy calculations. These altogether confirmed that MMC uniformly disrupted the structure of the target proteins and essential substrates. Further, MMC demonstrated IC50 < 5 μM against the Dd2 and 3D7 strains of parasite making it a good starting point for malarial drug development. We believe that findings from our study will be important in the current search for highly effective multi-stage antimalarial drugs

    Chemical constituents of two Cameroonian medicinal plants: Sida rhombifolia L. and Sida acuta Burm. f. (Malvaceae) and their antiplasmodial activity

    No full text
    Kamdoum BC, Simo I, Wouamba SCN, et al. Chemical constituents of two Cameroonian medicinal plants: Sida rhombifolia L. and Sida acuta Burm. f. (Malvaceae) and their antiplasmodial activity. Natural product research. 2021.An extensive phytochemical investigation of the EtOH/H2O (7:3) extracts of Sida rhombifolia L. and Sida acuta Burm. f., yielded a previously undescribed ceramide named rhombifoliamide (1) and a xylitol dimer (2), naturally isolated here for the first time, as well as the thirteen known compounds viz, oleanolic acid (3), beta-amyrin glucoside (4), ursolic acid (5), beta-sitosterol glucoside (6), tiliroside (7), 1,6-dihydroxyxanthone (8), a mixture of stigmasterol (9) and beta-sitosterol (10), cryptolepine (11), 20-Hydroxyecdysone (12), (E)-suberenol (13), thamnosmonin (14) and xanthyletin (15). Their structures were elucidated by the analyses of their spectroscopic and spectrometric data (1D and 2D NMR, and HRESI-MS) and by comparison with the previously reported data. The crude extracts, fractions, and some isolated compounds were tested against chloroquine-sensitive (3D7) and chloroquine-resistant (Dd2) Plasmodium falciparum strains. All the tested samples demonstrated moderate and/or significant activities against 3D7 (IC50 values: 0.18-20.11g/mL) and Dd2 (IC50 values: 0.74-63.09g/mL)

    In Vivo Antiplasmodial Activity of Terminalia mantaly Stem Bark Aqueous Extract in Mice Infected by Plasmodium berghei

    No full text
    Background. Terminalia mantaly is used in Cameroon traditional medicine to treat malaria and related symptoms. However, its antiplasmodial efficacy is still to be established. Objectives. The present study is aimed at evaluating the in vitro and in vivo antiplasmodial activity and the oral acute toxicity of the Terminalia mantaly extracts. Materials and Methods. Extracts were prepared from leaves and stem bark of T. mantaly, by maceration in distilled water, methanol, ethanol, dichloromethane (DCM), and hexane. All extracts were initially screened in vitro against the chloroquine-resistant strain W2 of P. falciparum to confirm its in vitro activity, and the most potent one was assessed in malaria mouse model at three concentrations (100, 200, and 400 mg/kg/bw). Biochemical, hematological, and histological parameters were also determined. Results. Overall, 7 extracts showed in vitro antiplasmodial activity with IC50 ranging from 0.809 μg/mL to 5.886 μg/mL. The aqueous extract from the stem bark of T. mantaly (Tmsbw) was the most potent (IC50=0.809 μg/mL) and was further assessed for acute toxicity and efficacy in Plasmodium berghei-infected mice. Tmsbw was safe in mice with a median lethal dose (LD50) higher than 2000 mg/kg of body weight. It also exerted a good antimalarial efficacy in vivo with ED50 of 69.50 mg/kg and had no significant effect on biochemical, hematological, and histological parameters. Conclusion. The results suggest that the stem bark extract of T. mantaly possesses antimalarial activity

    In vitro antiplasmodial activity and toxicological profile of extracts, fractions and chemical constituents of leaves and stem bark from Dacryodes edulis (Burseraceae)

    No full text
    Dongmo KJJ, Tali MBT, Fongang YSF, et al. In vitro antiplasmodial activity and toxicological profile of extracts, fractions and chemical constituents of leaves and stem bark from Dacryodes edulis (Burseraceae). BMC Complementary Medicine and Therapies. 2023;23(1): 211.BACKGROUND: Dacryodes edulis is a plant that belongs to the Burseraceae family. It is widely used traditionally alone or in association with other plants in Cameroonian folk medicine to cure wounds, fever, headaches, and malaria. The aim of this work was to investigate the leaves and stem bark of D. edulis with an emphasis on the antiplasmodial and cytotoxic effects of extracts, fractions, and isolated compounds.; METHODS: Extracts, fractions, and some isolated compounds were subjected to antiplasmodial activity screening in vitro against chloroquine-sensitive 3D7 and multidrug resistant Dd2 strains of Plasmodium falciparum using a SyBr Green fluorescence-based assay. The cytotoxicity of active extracts, fractions, and compounds was tested against mammalian Raw cell lines using an in vitro resazurin-based viability assay. The structures of the compounds were determined based on their NMR and MS data. The in vivo toxicity using female BALB/c mice was performed on the most active extract according to the protocol of OECD (2002), guideline 423.; RESULTS: The hydroethanolic extract from the leaves of D. edulis displayed good antiplasmodial activity with IC50 values of 3.10 and 3.56mug/mL respectively on sensitive (3D7) and multiresistant (Dd2) strains of P. falciparum. Of the sixteen compounds isolated, 3,3',4-tri-O-methylellagic acid (4) exhibited the highest antiplasmodial activity against PfDd2 strains with an IC50 value of 0.63mug/mL. All extracts, fractions, and isolated compounds demonstrated nocytotoxicity against Raw cell lines with CC50>250mug/mL. In addition, the most active extract on both strains of P. falciparum was nontoxic in vivo, with a LD50 greater than 2000 and 5000mg/kg. A phytochemical investigation of the stem bark and leaves of D. edulis afforded sixteen compounds, including two xanthones (1-2), three ellagic acid derivatives (3-5), one phenolic compound (6), one depside (7), one triglyceride (8), one auranthiamide acetate (9), one gallic acid derivative (10), four triterpenoids (11-14), and two steroids (15-16). Compounds 1, 2, 5, 7, 8, and 9 were herein reported for the first time from the Burseraceae family.; CONCLUSION: This work highlights the good in vitro antiplasmodial potency of the hydroethanolic extract of the leaves of this plant and that of two isolated constituents (3,3',4-tri-O-methylellagic acid and ethylgallate) from the plant. These biological results support the use of D. edulis in traditional medicine against malaria. © 2023. The Author(s)

    New lignan glycosides from Justicia secunda Vahl (Acanthaceae) with antimicrobial and antiparasitic properties

    No full text
    Three new lignan glucosides, namely, justisecundosides A (1), B (2a), and C (2b), were isolated from the whole plant of Justicia secunda together with seven known compounds (3−9). Their structures were established based on a comprehensive analysis of HR-ESI-MS, IR, UV, and CD, in conjunction with their 1D and 2D-NMR data. A putative biogenetic pathway of compounds 1−2a,b from coniferyl alcohol was proposed. In addition, the antimicrobialactivities of the extract, fractions, and some isolated compounds were assessed against multiresistant bacterial and fungal strains. Furthermore, the antiplasmodial, antileishmanial, and antitrypanosomal activities were assessed against the sensitive (3D7) and multidrug-resistant (Dd2) strains of P. falciparum, promastigote and bloodstream forms of L. donovani, and Trypanosoma brucei, respectively. Compound 4 exhibited moderate antibacterial activity against Staphylococcus aureus SA RN 46003 with a MIC value of 62.5 μg/mL. Besides, compound 6 demonstrated a very good activity against sensitive (IC50 Pf3D7: 0.81 μg/mL) and multidrug-resistant (IC50 PfDd2: 14.61 μg/mL) strains of P. falciparum while compound 4 displayed good antitrypanosomal activity (IC50: 1.19 μg/mL). Also, compound 1 was the most active on the promastigote form of L. donovani with an IC50 of 13.02 μg/mL

    Constituents from ripe figs of Ficus vallis-choudae Delile (Moraceae) with antiplasmodial activity

    No full text
    Chouna HSD, Dize D, Kagho DUK, et al. Constituents from ripe figs of Ficus vallis-choudae Delile (Moraceae) with antiplasmodial activity. Parasitology Research. 2022.Ripe figs, barks, and wood of Ficus vallis-choudae are used in traditional medicine against several conditions including nausea and malaria. However, its use is still to be scientifically documented and validated. Hence, the aim of the present work was to evaluate the antiplasmodial activity of the dichloromethane-methanol (DCM-MeOH (1:1)) crude extract, their hexane, dichloromethane, ethyl acetate, and methanoli fractions, as well as the isolated chemical constituents. The chemical study of the DCM-MeOH (1:1) crude extract of F. vallis-choudae figs led to the isolation of fifteen (15) known compounds identified based on their spectroscopic data [one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR), mass spectrometry] and by comparison of these data with those reported in the literature. Some of the isolated compounds were assessed in vitro for their antiplasmodial activity against Plasmodium falciparum chloroquine-sensitive 3D7 (Pf3D7) and multidrug-resistant Dd2 strains. The dichloromethane fraction exhibited very good antiplasmodial activity against both strains with IC50 values of 13.86mug/mL and 8.18mug/mL, respectively. Among the tested compounds, wighteone (2) was the most active against P. falciparum 3D7 (IC50=24.6±1.5muM) and Dd2 (IC50=11.9±2.4muM) strains. The obtained results could justify the traditional uses of F. vallis-choudae against malaria. Wighteone appears to be the most active ingredient. However, further consideration of this compound as starting point for antimalarial drug discovery will depend upon its selectivity of action towards Plasmodium parasites. HIGHLIGHTS: 15 (fifteen) compounds were isolated from the dichloromethane-methanol extract of Ficus vallis-choudae. Their structures were determined on the basis of their spectroscopic data. The dichloromethane fraction showed promising activities on the Pf3D7 and PfDd2 strains with IC50 values of 13.86 and 8.18g/mL, respectively. Wighteone was the most active compound against PfDd2 (IC50=11.9±2.4muM). © 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature
    corecore