16 research outputs found

    Caractérisation enzymatique et structurale d'une nouvelle famille d'aldéhyde déshydrogénase impliquée dans la dégradation de composés aromatiques toxiques

    No full text
    Deux familles d'aldéhyde déshydrogénases (ALDH) phylogénétiquement et structuralement distinctes catalysent l'oxydation des aldéhydes : les ALDH phosphorylantes et les ALDH non phosphorylantes. Ces enzymes jouent un rÎle essentiel au niveau cellulaire en intervenant au niveau du métabolisme et dans des processus de détoxication. En 2003, la résolution de la structure tridimensionnelle de l'enzyme bifonctionnelle 4-hydroxy-2-cétovalérate aldolase/acétaldéhyde déshydrogénase (DmpFG) de Pseudomonas sp. CF600 a permis l'identification d'une nouvelle famille d'ALDH : la sous-unité DmpF étant structuralement apparentée aux ALDH phosphorylantes alors qu'elle présente une activité de type non phosphorylante CoA-dépendante. Par la caractérisation enzymatique et structurale des orthologues MhpEF issus d'Escherichia coli et de Thermomonospora curvata, nos travaux montrent que les paramÚtres cinétiques de MhpF ne dépendent pas de son état oligomérique, ce qui est cas unique pour les ALDH. De plus, la résolution des structures cristallographiques de l'enzyme complexée avec du NAD+ ou du CoA, couplée à la structure en solution de la forme apoenzyme obtenue par SAXS montrent que le Rossmann fold s'accomode de la présence des cofacteurs par un vaste changement conformationnel. Enfin, l'étude du mécanisme catalytique et la résolution de la structure thioacylenzyme permettent d'identifierla MhpF comme étant un hybride des deux familles d'ALDH caractérisées jusqu'à présentTwo phylogenetically and structurally unrelated families of NAD(P)-dependent aldehyde dehydrogenases (ALDH) catalyze the oxidation of aldehydes into activated or non-activated acids. These enzymes are known to be involved in many biological functions such as cellular differentiation, central metabolism, or detoxification pathways. The crystal structure of the bifunctional enzyme, 4-hydroxy-2-ketovalerate aldolase (DmpG)/acetaldehyde dehydrogenase (DpmF) from Pseudomonas sp. CF600, leads to the identification of a new ALDH family. The DmpF subunit exhibits a non-phosphorylating CoA-dependent aldehyde dehydrogenase activity while its structure belongs to the phosphorylating ALDH superfamily. The kinetics of the MhpEF orthologs from Escherichia coli and Thermomonospora curvata show that the kinetic parameters of MhpF do not depend of its oligomeric state, which is unique for an ALDH. In addition, the crystal structures of the enzyme with NAD+ or CoA, as well as the solution structure of the apoenzyme using SAXS, reveal the dynamics of the overall Rossmann fold between apo or cofactors-bound conformers, which is necessary to carry on the catalytic cycle. Finally, the catalytic mechanism and the structure of the thioacylenzyme intermediates indicate that MhpF is a hybrid between both ALDH families characterized to dateMETZ-SCD (574632105) / SudocNANCY1-Bib. numérique (543959902) / SudocNANCY2-Bibliotheque electronique (543959901) / SudocNANCY-INPL-Bib. électronique (545479901) / SudocSudocFranceF

    Enzyme Active Site Loop Revealed as a Gatekeeper for Cofactor Flip by Targeted Molecular Dynamics Simulations and FRET-Based Kinetics

    No full text
    International audienceStructural motions are key events in enzyme catalysis, as exemplified by the conformational dynamics associated with the cofactor in the catalytic mechanism of hydrolytic NAD(P)-dependent aldehyde dehydrogenases. We previously showed that, after the oxidoreduction step, the reduced cofactor must adopt a flipped conformation, which positions the nicotinamide in a conserved cavity that might constitute the exit door for NAD(P)H. However, the molecular basis that make this movement possible is unknown. Based on the pre- and postflip X-ray structures, targeted molecular dynamic simulations enabled us to identify the E268LGG271 conserved loop that must shift to allow reduced nicotinamide conformational switch. To monitor cofactor movements within the active site, we used an intrinsic fluorescence resonance energy transfer signal between Trp177 and the reduced nicotinamide moiety to kinetically track the flip during the catalytic cycle of retinal dehydrogenase 2 (ALDH1A2). Decreasing loop flexibility by substituting Ala for Gly271 drastically reduced the rate constant associated with this movement that became rate-limiting. We thus propose that the E268LGG271 loop acts as a gatekeeper for cofactor flipping. Similar approaches applied to a CoA-dependent aldehyde dehydrogenase showed that cofactor flipping likely extends to the whole ALDH family, thus bridging the gap between the well-studied chemical steps and a conformational transition essential for catalysis

    Catalytic properties of a bacterial acylating acetaldehyde dehydrogenase: evidence for several active oligomeric states and coenzyme A activation upon binding

    No full text
    International audienceUntil the last decade, two unrelated aldehyde dehydrogenase (ALDH) superfamilies, i.e. the phosphorylating and non-phosphorylating superfamilies, were known to catalyze the oxidation of aldehydes to activated or non-activated acids. However, a third one was discovered by the crystal structure of a bifunctional enzyme 4-hydroxy-2-ketovalerate aldolase/acylating acetaldehyde dehydrogenase (DmpFG) from Pseudomonas sp. strain CF600 (Manjasetty et al., Proc. Natl. Acad. Sci. USA 100 (2003) 6992-6997). Indeed, DmpF exhibits a non-phosphorylating CoA-dependent ALDH activity, but is structurally related to the phosphorylating superfamily. In this study, we undertook the characterization of the catalytic and structural properties of MhpEF from Escherichia coli, an ortholog of DmpFG in which MhpF converts acetaldehyde, produced by the cleavage of 4-hydroxy-2-ketovalerate by MhpE, into acetyl-CoA. The kinetic data obtained under steady-state and pre-steady-state conditions show that the aldehyde dehydrogenase, MhpF, is active as a monomer, a unique feature relative to the phosphorylating and non-phosphorylating ALDH superfamilies. Our results also reveal that the catalytic properties of MhpF are not dependent on its oligomeric state, supporting the hypothesis of a structurally and catalytically independent entity. Moreover, the transthioesterification is shown to be rate-limiting and, when compared with a chemical model, its catalytic efficiency is increased 10(4)-fold. Therefore, CoA binding to MhpF increases its reactivity and optimizes its positioning relative to the thioacylenzyme intermediate, thus enabling the formation of an efficient deacylation complex

    Rhodanese-Fold Containing Proteins in Humans: Not Just Key Players in Sulfur Trafficking

    No full text
    The Rhodanese-fold is a ubiquitous structural domain present in various protein subfamilies associated with different physiological functions or pathophysiological conditions in humans. Proteins harboring a Rhodanese domain are diverse in terms of domain architecture, with some representatives exhibiting one or several Rhodanese domains, fused or not to other structural domains. The most famous Rhodanese domains are catalytically active, thanks to an active-site loop containing an essential cysteine residue which allows for catalyzing sulfur transfer reactions involved in sulfur trafficking, hydrogen sulfide metabolism, biosynthesis of molybdenum cofactor, thio-modification of tRNAs or protein urmylation. In addition, they also catalyse phosphatase reactions linked to cell cycle regulation, and recent advances proposed a new role into tRNA hydroxylation, illustrating the catalytic versatility of Rhodanese domain. To date, no exhaustive analysis of Rhodanese containing protein equipment from humans is available. In this review, we focus on structural and biochemical properties of human-active Rhodanese-containing proteins, in order to provide a picture of their established or putative key roles in many essential biological functions
    corecore