8 research outputs found

    Digital entrepreneurship from cellular data: How omics afford the emergence of a new wave of digital ventures in health

    Get PDF
    Data has become an indispensable input, throughput, and output for the healthcare industry. In recent years, omics technologies such as genomics and proteomics have generated vast amounts of new data at the cellular level including molecular, structural, and functional levels. Cellular data holds the potential to innovate therapeutics, vaccines, diagnostics, consumer products, or even ancestry services. However, data at the cellular level is generated with rapidly evolving omics technologies. These technologies use scientific knowledge from resource-rich environments. This raises the question of how new ventures can use cellular-level data from omics technologies to create new products and scale their business. We report on a series of interviews and a focus group discussion with entrepreneurs, investors, and data providers. By conceptualizing omics technologies as external enablers, we show how characteristics of cellular-level data negatively affect the combination mechanisms that drive venture creation and growth. We illustrate how data characteristics set boundary conditions for innovation and entrepreneurship and highlight how ventures seek to mitigate their impact

    Poxviruses and paramyxoviruses use a conserved mechanism of STAT1 antagonism to inhibit interferon signaling.

    Get PDF
    The induction of interferon (IFN)-stimulated genes by STATs is a critical host defense mechanism against virus infection. Here, we report that a highly expressed poxvirus protein, 018, inhibits IFN-induced signaling by binding to the SH2 domain of STAT1, thereby preventing the association of STAT1 with an activated IFN receptor. Despite encoding other inhibitors of IFN-induced signaling, a poxvirus mutant lacking 018 was attenuated in mice. The 2.0 Å crystal structure of the 018:STAT1 complex reveals a phosphotyrosine-independent mode of 018 binding to the SH2 domain of STAT1. Moreover, the STAT1-binding motif of 018 shows similarity to the STAT1-binding proteins from Nipah virus, which, similar to 018, block the association of STAT1 with an IFN receptor. Overall, these results uncover a conserved mechanism of STAT1 antagonism that is employed independently by distinct virus families
    corecore