46 research outputs found

    Caspase Inhibitors of the P35 Family Are More Active When Purified from Yeast than Bacteria

    Get PDF
    Many insect viruses express caspase inhibitors of the P35 superfamily, which prevent defensive host apoptosis to enable viral propagation. The prototypical P35 family member, AcP35 from Autographa californica M nucleopolyhedrovirus, has been extensively studied. Bacterially purified AcP35 has been previously shown to inhibit caspases from insect, mammalian and nematode species. This inhibition occurs via a pseudosubstrate mechanism involving caspase-mediated cleavage of a “reactive site loop” within the P35 protein, which ultimately leaves cleaved P35 covalently bound to the caspase's active site. We observed that AcP35 purifed from Saccharomyces cerevisae inhibited caspase activity more efficiently than AcP35 purified from Escherichia coli. This differential potency was more dramatic for another P35 family member, MaviP35, which inhibited human caspase 3 almost 300-fold more potently when purified from yeast than bacteria. Biophysical assays revealed that MaviP35 proteins produced in bacteria and yeast had similar primary and secondary structures. However, bacterially produced MaviP35 possessed greater thermal stability and propensity to form higher order oligomers than its counterpart purified from yeast. Caspase 3 could process yeast-purified MaviP35, but failed to detectably cleave bacterially purified MaviP35. These data suggest that bacterially produced P35 proteins adopt subtly different conformations from their yeast-expressed counterparts, which hinder caspase access to the reactive site loop to reduce the potency of caspase inhibition, and promote aggregation. These data highlight the differential caspase inhibition by recombinant P35 proteins purified from different sources, and caution that analyses of bacterially produced P35 family members (and perhaps other types of proteins) may underestimate their activity

    Foetal fluid balance and hormone status following nephrectomy in the foetal sheep

    No full text
    1, The role of the kidneys in the maintenance of normal foetal plasma (FP) composition and hormone concentrations was examined in the present study. Five ovine foetuses were chronically cannulated and nephrectomized (nephx) at 100+/-1 days of gestation and maintained for 14 days. These were compared to five intact control foetuses

    Identification and characterization of antibody-binding epitopes on the norovirus GII.3 capsid

    No full text
    Genotype II.3 (GII.3) noroviruses are a major cause of sporadic gastroenteritis, particularly in children. The greater incidence of GII.3 noroviruses in the pediatric population compared to the adult demographic suggests development of herd immunity to this genotype, possibly as a consequence of limited evolution of immune epitopes. This study aimed to identify and characterize immune epitopes on the GII.3 capsid protein and to determine the level of immune cross-reactivity within the genotype. A panel of seven GII.3 virus-like particles (VLPs), representing norovirus strains isolated during 1975 to 2008, was tested by enzymelinked immunosorbent assay (ELISA) for reactivity with human sera and a rabbit anti-GII.3 strain-specific polyclonal serum generated against the 2008 GII.3 VLP. Immunoprecipitation of protease-digested GII.3 VLPs and sequencing of bound peptides via mass spectrometry were used to locate epitopes on the capsid. Two epitopes were investigated further using Mimotopes technology. Serum binding studies demonstrated complete intragenotype GII.3 cross-reactivity using both human and rabbit serum. Six immunoreactive regions containing epitopes were located on the GII.3 capsid protein, two within each capsid domain. Epitopes in the S and P1 domains were highly conserved within GII.3 noroviruses. P2 domain epitopes were variable and contained evolutionarily important residues and histo-blood group antigen (HBGA) binding residues. In conclusion, anti-GII.3 antibody- binding epitopes are highly cross-reactive and mostly conserved within GII.3 strains. This may account for the limited GII.3 prevalence in adults and suggests that a GII.3 strain may be a valuable inclusion in a multivalent pediatric targeted VLP vaccine. Exploration of norovirus immune epitopes is vital for effective vaccine design

    Influence of nanoparticle mechanical property on protein corona formation

    No full text
    A protein corona forms around nanoparticles when they are intravenously injected into the bloodstream. The composition of the protein corona dictates the interactions between nanoparticles and the biological systems thus their immune evasion, blood circulation, and biodistribution. Here, we report for the first time the impact of nanoparticle stiffness on protein corona formation using a unique emulsion core silica shell nanocapsules library with a wide range of mechanical properties over four magnitudes (700 kPa to 10 GPa). The nanocapsules with different stiffness showed distinct proteomic fingerprints. The protein corona of the stiffest nanocapsules contained the highest amount of complement protein (Complement C3) and immunoglobulin proteins, which contributed to their high macrophage uptake, confirming the important role of nanocapsules stiffness in controlling the protein corona formation thus their in vitro and in vivo behaviors.Tengjisi, Yue Hui, Yuanyuan Fan, DaZou, Gert H.Talbo, Guangze Yang, Chun-Xia Zha
    corecore