2 research outputs found

    Neutron-encoded diubiquitins to profile linkage selectivity of deubiquitinating enzymes

    Get PDF
    Deubiquitinating enzymes are key regulators in the ubiquitin system and an emerging class of drug targets. These proteases disassemble polyubiquitin chains and many deubiquitinases show selectivity for specific polyubiquitin linkages. However, most biochemical insights originate from studies of single diubiquitin linkages in isolation, whereas in cells all linkages coexist. To better mimick this diubiquitin substrate competition, we develop a multiplexed mass spectrometry-based deubiquitinase assay that can probe all ubiquitin linkage types simultaneously to quantify deubiquitinase activity in the presence of all potential diubiquitin substrates. For this, all eight native diubiquitins are generated and each linkage type is designed with a distinct molecular weight by incorporating neutron-encoded amino acids. Overall, 22 deubiquitinases are profiled, providing a three-dimensional overview of deubiquitinase linkage selectivity over time and enzyme concentration.</p

    Modified influenza M158–66 peptide vaccination induces non-relevant T-cells and may enhance pathology after challenge

    Get PDF
    Abstract CD8 + T cells are promising targets for vaccination against influenza A virus (IAV) infection. Their induction via peptide vaccination is not trivial, because peptides are weakly immunogenic. One strategy to overcome this is by vaccination with chemically enhanced altered peptide ligands (CPLs), which have improved MHC-binding and immunogenicity. It remains unknown how peptide-modification affects the resulting immune response. We studied the effect of CPLs derived from the influenza M158–66 epitope (GILGFVFTL) on the T-cell response. In HLA-A2*0201 transgenic mice, CPL-vaccination led to higher T-cell frequencies, but only a small percentage of the induced T cells recognized the GILG-wildtype (WT) peptide. CPL-vaccination resulted in a lower richness of the GILG-WT-specific T-cell repertoire and no improved protection against IAV-infection compared to GILG-WT peptide-vaccination. One CPL even appeared to enhance pathology after IAV-challenge. CPL-vaccination thus induces T cells not targeting the original peptide, which may lead to potential unwanted side effects
    corecore