104 research outputs found

    Gas transport properties through intact and fractured Callovo-Oxfordian mudstones

    Get PDF
    A series of controlled water and gas experiments was undertaken on samples of Callovo-Oxfordian (COx) mudstone using a synthetic fluid and helium gas. Data from this study demonstrate that the advective movement of gas through COx is accompanied by dilation of the original fabric (i.e. the formation of pressure-induced microfissures) at gas pressures significantly below that of the minimum principal stress. Flow occurs through a local network of unstable pathways, the properties of which vary temporally and spatially within the mudstone. The coupling of variables results in the development of significant time-dependent effects affecting many aspects of COx behaviour, from the gas breakthrough time to the control of deformation processes. Variations in gas entry, breakthrough and steady-state pressures may result from the arbitrary nature of the flow pathways and/or microstructural heterogeneity. Under these conditions, the data suggest that gas flow is along pressure-induced preferential pathways, where permeability is a dependent variable related to the number, width and aperture distributions of these features. This has important implications for modelling gas migration through low permeability, clay-rich materials

    Digital volume correlation applied to X-ray micro-tomography images in uniaxial creep tests on anisotropic clayey rock

    Get PDF
    Creep tests are commonly performed to characterize time-dependent deformation of geological materials. Classical measuring methods are not suitable for long term tests and not able to provide full three-dimensional strain fields. In this study, Digital Volume Correlation (DVC) is applied to X-ray micro-tomography (XRMT) images from creep tests on a hard clayey rock. In situ uniaxial compression creep tests are performed under different levels of stress and with different loading orientations with respect to the structural anisotropy of rock. Based on the XRMT images taken during the creep tests, DVC is applied to compute the full three dimensional strain fields and global averages strains of tested samples. The effects of bedding planes and hard inclusions on the non-uniform distribution of strains are analyzed

    The role of the stress-path and importance of stress history on the flow of water along fractures and faults; an experimental study conducted on kaolinite gouge and Callovo-Oxfordian mudstone

    Get PDF
    The flow of water along discontinuities, such as fractures or faults, is of paramount importance in understanding the hydromechanical response of an underground geological disposal facility for radioactive waste. This paper reports four experiments conducted on kaolinite gouge on a 30° slip-plane and on realistic fractures created in Callovo-Oxfordian mudstone (COx) from France. Test histories were conducted that initially loaded the gouge material in step changes in vertical stress, followed by unloading of the sample in similar steps. This loading-unloading history showed considerable hysteresis in hydraulic flow, with only partial recovery of fracture transmissivity. This demonstrates the importance of stress history on fracture flow; consideration of just the current stress acting upon a fracture or fault may result in inaccuracies of predicted hydraulic flow. The stress dependency of fracture flow in both kaolinite and COx can be described by a power-law or cubic relationship, which is likely to be dependent on the fracture roughness, thickness of gouge material, saturation state, permeability of the host material, and clay mineralogy (i.e. swelling potential). The observed response of fracture transmissivity to normal stress in COx is a complex superposition of mechanical response of the fracture and the swelling of clay in the fracture surface. The stress-dependency of flow was also seen to be dependent on orientation with respect to bedding. A fracture perpendicular with bedding accommodates greater compression and results in a lower transmissivity. The orientation dependence is related to the anisotropic swelling characteristics of CO

    Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5

    Get PDF
    We present the global general circulation model IPSL-CM5 developed to study the long-term response of the climate system to natural and anthropogenic forcings as part of the 5th Phase of the Coupled Model Intercomparison Project (CMIP5). This model includes an interactive carbon cycle, a representation of tropospheric and stratospheric chemistry, and a comprehensive representation of aerosols. As it represents the principal dynamical, physical, and bio-geochemical processes relevant to the climate system, it may be referred to as an Earth System Model. However, the IPSL-CM5 model may be used in a multitude of configurations associated with different boundary conditions and with a range of complexities in terms of processes and interactions. This paper presents an overview of the different model components and explains how they were coupled and used to simulate historical climate changes over the past 150 years and different scenarios of future climate change. A single version of the IPSL-CM5 model (IPSL-CM5A-LR) was used to provide climate projections associated with different socio-economic scenarios, including the different Representative Concentration Pathways considered by CMIP5 and several scenarios from the Special Report on Emission Scenarios considered by CMIP3. Results suggest that the magnitude of global warming projections primarily depends on the socio-economic scenario considered, that there is potential for an aggressive mitigation policy to limit global warming to about two degrees, and that the behavior of some components of the climate system such as the Arctic sea ice and the Atlantic Meridional Overturning Circulation may change drastically by the end of the twenty-first century in the case of a no climate policy scenario. Although the magnitude of regional temperature and precipitation changes depends fairly linearly on the magnitude of the projected global warming (and thus on the scenario considered), the geographical pattern of these changes is strikingly similar for the different scenarios. The representation of atmospheric physical processes in the model is shown to strongly influence the simulated climate variability and both the magnitude and pattern of the projected climate changes

    Modelling of localized gas pathways in long-term gas injection test

    No full text
    info:eu-repo/semantics/publishe
    • …
    corecore