31 research outputs found

    Vibrational spectroscopy study of membrane anchoring monolayers and adsorbed biomolecules

    No full text
    The structure and function of biomolecules are closely linked. Therefore, understanding processes that govern the changes in the molecular structure is of fundamental and practical importance. Here we analyze tethered bilayer lipid membranes (tBLM) and laccase enzymes at the electrode surface in water and controlled electric potential environments. Water is crucial in maintaining the native state of biomolecules, while the electric methods are widely used in studying such biomolecules. To realize how these forces affect the structure and orientation of surface-adsorbed tBLMs and laccase enzymes in-situ, we applied the surface-enhanced Raman spectroscopy (SERS). Anchoring monolayer is an integral part of tBLMs. Our data suggest that molecules in anchoring monolayer are prone to aggregate into hydrophobic clusters due to the water and/or electric potential in this way corrupting the functional properties of tBLMs. We also propose a conventional spectral indicator for the quality of the anchoring monolayer. The information on how the structure of surface-adsorbed enzymes is altered due to the changing external electric potential is still scarce. Presented in our study is the link between electrode potential and tertiary structure of the laccase enzymes and their functional properties. We show that at a negative potential enzymes adopt an extended-flat configuration, while at more positive electrode potential they acquire “native” vertical configuration and its activity

    The Impact of an Anchoring Layer on the Formation of Tethered Bilayer Lipid Membranes on Silver Substrates

    No full text
    Tethered bilayer lipid membranes (tBLMs) have been known as stable and versatile experimental platforms for protein–membrane interaction studies. In this work, the assembly of functional tBLMs on silver substrates and the effect of the molecular chain-length of backfiller molecules on their properties were investigated. The following backfillers 3-mercapto-1-propanol (3M1P), 4-mercapto-1-butanol (4M1B), 6-mercapto-1-hexanol (6M1H), and 9-mercapto-1-nonanol (9M1N) mixed with the molecular anchor WC14 (20-tetradecyloxy-3,6,9,12,15,18,22 heptaoxahexatricontane-1-thiol) were used to form self-assembled monolayers (SAMs) on silver, which influenced a fusion of multilamellar vesicles and the formation of tBLMs. Spectroscopic analysis by SERS and RAIRS has shown that by using different-length backfiller molecules, it is possible to control WC14 anchor molecules orientation on the surface. An introduction of increasingly longer surface backfillers in the mixed SAM may be related to the increasing SAMs molecular order and more vertical orientation of WC14 at both the hydrophilic ethylenoxide segment and the hydrophobic lipid bilayer anchoring alkane chains. Since no clustering of WC14 alkane chains, which is deleterious for tBLM integrity, was observed on dry samples, the suitability of mixed-component SAMs for subsequent tBLM formation was further interrogated by electrochemical impedance spectroscopy (EIS). EIS showed the arrangement of well-insulating tBLMs if 3M1P was used as a backfiller. An increase in the length of the backfiller led to increased defectiveness of tBLMs. Despite variable defectiveness, all tBLMs responded to the pore-forming cholesterol-dependent cytolysin, vaginolysin in a manner consistent with the functional reconstitution of the toxin into phospholipid bilayer. This experiment demonstrates the biological relevance of tBLMs assembled on silver surfaces and indicates their utility as biosensing elements for the detection of pore-forming toxins in liquid samples

    Far-off resonance: multiwavelength Raman spectroscopy probing amide bands of amyloid-β-(37–42) peptide

    No full text
    Several neurodegenerative diseases, like Alzheimer’s and Parkinson’s are linked with protein aggregation into amyloid fibrils. Conformational changes of native protein into the β-sheet structure are associated with a significant change in the vibrational spectrum. This is especially true for amide bands which are inherently sensitive to the secondary structure of a protein. Raman amide bands are greatly intensified under resonance conditions, in the UV spectral range, allowing for the selective probing of the peptide backbone. In this work, we examine parallel β-sheet forming GGVVIA, the C-terminus segment of amyloid-β peptide, using UV–Vis, FTIR, and multiwavelength Raman spectroscopy. We find that amide bands are enhanced far from the expected UV range, i.e., at 442 nm. A reasonable two-fold relative intensity increase is observed for amide II mode (normalized according to the δCH2/δCH3 vibration) while comparing 442 and 633 nm excitations; an increase in relative intensity of other amide bands was also visible. The observed relative intensification of amide II, amide S, and amide III modes in the Raman spectrum recorded at 442 nm comparing with longer wavelength (633/785/830 nm) excited spectra allows unambiguous identification of amide bands in the complex Raman spectra of peptides and proteins containing the β-sheet structure

    Encapsulation of Aspartic Protease in Nonlamellar Lipid Liquid Crystalline Phases

    No full text
    Encapsulation of proteins within lipid inverse bicontinuous cubic phases (Q2) has been widely studied for many applications, such as protein crystallization or drug delivery of proteins for food and pharmaceutical purposes. However, the use of the lipid sponge (L3) phase for encapsulation of proteins has not yet been well explored. Here, we have employed a lipid system that forms highly swollen sponge phases to entrap aspartic protease (34 kDa), an enzyme used for food processing, e.g., to control the cheese-ripening process. Small-angle x-ray scattering showed that although the L3 phase was maintained at low enzyme concentrations (≤15 mg/mL), higher concentration induces a transition to more curved structures, i.e., transition from L3 to inverse bicontinuous cubic (Q2) phase. The Raman spectroscopy data showed minor conformational changes assigned to the lipid molecules that confirm the lipid-protein interactions. However, the peaks assigned to the protein showed that the structure was not significantly affected. This was consistent with the higher activity presented by the encapsulated aspartic protease compared to the free enzyme stored at the same temperature. Finally, the encapsulation efficiency of aspartic protease in lipid sponge-like nanoparticles was 81% as examined by size-exclusion chromatography. Based on these results, we discuss the large potential of lipid sponge phases as carriers for proteins

    Electrochemical SEIRAS Analysis of Imidazole-Ring-Functionalized Self-Assembled Monolayers

    No full text
    An essential amino acid, histidine, has a vital role in the secondary structure and catalytic activity of proteins because of the diverse interactions its side chain imidazole (Im) ring can take part in. Among these interactions, hydrogen donating and accepting bonding are often found to operate at the charged interfaces. However, despite the great biological significance, hydrogen-bond interactions are difficult to investigate at electrochemical interfaces due to the lack of appropriate experimental methods. Here, we present a surface-enhanced infrared absorption spectroscopy (SEIRAS) and density functional theory (DFT) study addressing this issue. To probe the hydrogen-bond interactions of the Im at the electrified organic layer/water interface, we constructed Au-adsorbed self-assembled monolayers (SAMs) that are functionalized with the Im group. As the prerequisite for spectroelectrochemical investigations, we first analyzed the formation of the monolayer and the relationship between the chemical composition of SAM and its structure. Infrared absorption markers that are sensitive to hydrogen-bonding interactions were identified. We found that negative electrode polarization effectively reduced hydrogen-bonding strength at the Im ring at the organic layer–water interface. The possible mechanism governing such a decrease in hydrogen-bonding interaction strength is discussed

    Electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy of imidazole ring functionalized monolayer on smooth gold electrode

    No full text
    The imidazole ring (Im) of histidine side chains plays a unique role in the function of proteins through covalent bonding with metal ions and hydrogen bonding interactions with adjusted biomolecules and water. At biological interfaces, these interactions are modified because of the presence of an electric field. Self-assembled monolayers (SAMs) with the functional Im group mimic the histidine side chain at electrified interfaces. In this study, we applied in-situ shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) to probe the structure and hydrogen bonding of Im-functionalized SAM on smooth Au at the electrochemical interface. The self-assembly of molecules on the Au induced the proton shift from N1 atom (Tautomer-I), which is the dominant form of Im in the bulk sample, to N3 atom (Tautomer-II). The impact of electrode potential on the hydrogen bonding interaction strength of the Im ring was identified by SHINERS. Temperature-Raman measurements and density functional theory (DFT) analysis revealed the spectral marker for Im ring packing (mode near 1496–1480 cm−1) that allowed us to associate the confined and strongly hydrogen bonded interfacial Im groups with electrode polarization at −0.8 V. Reflection adsorption IR (RAIR) spectra of SAMs with and without Im revealed that the bulky ring prevented the formation of a strongly hydrogen bonded amide group network

    Effect of pH on Electrochemical Impedance Response of Tethered Bilayer Lipid Membranes: Implications for Quantitative Biosensing

    No full text
    Tethered bilayer lipid membranes (tBLMs) are increasingly used in biosensor applications where electrochemical impedance spectroscopy (EIS) is the method of choice for amplifying and recording the activity of membrane-damaging agents such as pore-forming toxins or disrupting peptides. While the activity of these biological agents may depend on the pH of the analytes, there is increasing evidence that the sensitivity of tethered bilayer sensors depends on the pH of the solutions. In our study, we addressed the question of what are the fundamental reasons for the variability of the EIS signal of the tBLMs with pH. We designed an experiment to compare the EIS response of tBLMs with natural membrane defects and two different membrane disruptors: vaginolysin and melittin. Our experimental design ensured that the same amount of protein and peptide was present in the tBLMs, while the pH was varied by replacing the buffers with different pH values. Using a recently developed EIS data analysis algorithm from our research group, we were able to demonstrate that, in contrast to previous literature which relates the variability of tBLM, EIS response to the variation in defect density, the main reason for the observed variability in EIS response is the change in the sub-membrane properties of tBLMs with pH. Using surface-enhanced infrared absorption spectroscopy (SEIRAS), we have shown that pH changes from neutral to slightly acidic leads to an expulsion of water, presumably bound to ions, from the sub-membrane reservoir, resulting in a marked decrease in the carrier concentration and specific conductance of the sub-membrane reservoir. Such a decrease is recorded by the EIS as a decrease in the conductance of the tBLM complex and affects the sensitivity of a biosensor. Our data provide important evidence of pH-sensitive effects that should be considered in both the development and operation of biosensors

    Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy for Probing Riboflavin on Graphene

    No full text
    Graphene research and technology development requires to reveal adsorption processes and understand how the defects change the physicochemical properties of the graphene-based systems. In this study, shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) and graphene-enhanced Raman spectroscopy (GERS) coupled with density functional theory (DFT) modeling were applied for probing the structure of riboflavin adsorbed on single-layer graphene substrate grown on copper. Intense and detailed vibrational signatures of the adsorbed riboflavin were revealed by SHINERS method. Based on DFT modeling and detected downshift of prominent riboflavin band at 1349 cm−1 comparing with the solution Raman spectrum, π-stacking interaction between the adsorbate and graphene was confirmed. Different spectral patterns from graphene-riboflavin surface were revealed by SHINERS and GERS techniques. Contrary to GERS method, SHINERS spectra revealed not only ring stretching bands but also vibrational features associated with ribityl group of riboflavin and D-band of graphene. Based on DFT modeling it was suggested that activation of D-band took place due to riboflavin induced tilt and distortion of graphene plane. The ability to explore local perturbations by the SHINERS method was highlighted. We demonstrated that SHINERS spectroscopy has a great potential to probe adsorbed molecules at graphene
    corecore