94 research outputs found

    Polarity reversals of remanent magnetization in a sedimentary core from Northwind Ridge, western Arctic Ocean

    Get PDF
    We studied the remanent magnetization of a sedimentary core PC2 (6.48m length) drilled during the MR99-K05 cruise of JAMSTEC in the western Arctic Ocean. Discrete specimens and u-channel samples were used in the study. In the discrete specimens, the change of remanent magnetization with depth show many clear polarity reversals in both inclination and declination. Furthermore, most reversals in discrete specimens correlated well with those in the u-channel samples. Core PC2 is characterized by distinct alternations of dark gray and brownish layers. Through comparison of lithostratigraphic cycles with glacial-interglacial cycles (referring to R.L. Phillips and A. Grantz, Geol. Soc. Am. Bull., 109, 1101, 1997), sedimentary cycles of core PC2 are correlated to marine isotope stages up to MIS-8. This indicates that polarity reversals of remanent magnetization in core PC2 are geomagnetic excursions in the Brunhes epoch. Comparison with the previously known geomagnetic excursions shows that the polarity reversals are clear and have long duration in core PC2. This feature may be related to characteristic geomagnetism around the western Arctic Ocean

    Multiple episodes of ice loss from the Wilkes Subglacial Basin during the Last Interglacial

    Get PDF
    The Last Interglacial (LIG: 130,000–115,000 years ago) was a period of warmer global mean temperatures and higher and more variable sea levels than the Holocene (11,700–0 years ago). Therefore, a better understanding of Antarctic ice-sheet dynamics during this interval would provide valuable insights for projecting sea-level change in future warming scenarios. Here we present a high-resolution record constraining ice-sheet changes in the Wilkes Subglacial Basin (WSB) of East Antarctica during the LIG, based on analysis of sediment provenance and an ice melt proxy in a marine sediment core retrieved from the Wilkes Land margin. Our sedimentary records, together with existing ice-core records, reveal dynamic fluctuations of the ice sheet in the WSB, with thinning, melting, and potentially retreat leading to ice loss during both early and late stages of the LIG. We suggest that such changes along the East Antarctic Ice Sheet margin may have contributed to fluctuating global sea levels during the LIG

    Paleoclimatic and paleoceanographic records through Marine Isotope Stage 19 at the Chiba composite section, central Japan: A key reference for the EarlyeMiddle Pleistocene Subseries boundary

    Get PDF
    Marine Isotope Stage (MIS) 19 is an important analogue for the present interglacial because of its similar orbital configuration, especially the phasing of the obliquity maximum to precession minimum. However, sedimentary records suitable for capturing both terrestrial and marine environmental changes are limited, and thus the climatic forcing mechanisms for MIS 19 are still largely unknown. The Chiba composite section, east-central Japanese archipelago, is a continuous and expanded marine sedimentary succession well suited to capture terrestrial and marine environmental changes through MIS 19. In this study, a detailed oxygen isotope chronology is established from late MIS 20 to early MIS 18, supported by a U-Pb zircon age and the presence of the Matuyama–Brunhes boundary. New pollen, marine microfossil, and planktonic foraminiferal δ18O and Mg/Ca paleotemperature records reveal the complex interplay of climatic influences. Our pollen data suggest that the duration of full interglacial conditions during MIS 19 extends from 785.0 to 775.1 ka (9.9 kyr), which offers an important natural baseline in predicting the duration of the present interglacial. A Younger Dryas-type cooling event is present during Termination IX, suggesting that such events are linked to this orbital configuration. Millennial- to multi-millennial-scale variations in our δ18O and Mg/Ca records imply that the Subarctic Front fluctuated in the northwestern Pacific Ocean during late MIS 19, probably in response to East Asian winter monsoon variability. The climatic setting at this time appears to be related to less severe summer insolation minima at 65˚N and/or high winter insolation at 50˚N. Our records do not support a recently hypothesized direct coupling between variations in the geomagnetic field intensity and global/regional climate change. Our highly resolved paleoclimatic and paleoceanographic records, coupled with a well-defined Matuyama–Brunhes boundary (772.9 ka; duration 1.9 kyr), establish the Chiba composite section as an exceptional climatic and chronological reference section for the Early–Middle Pleistocene boundary.ArticleQuaternary Science Reviews 191: 406-430(2018)journal articl

    Antarctic Cryosphere Evolution Project (AnCEP): New IODP proposal for transect drilling in the Southern Ocean

    Get PDF
    第3回極域科学シンポジウム 横断セッション「海・陸・氷床から探る後期新生代の南極寒冷圏環境変動」11月26日(月) 国立国語研究所 2階講

    Comparative single-cell genomics of Atribacterota JS1 in the Japan Trench hadal sedimentary biosphere

    Get PDF
    Deep-sea and subseafloor sedimentary environments host heterotrophic microbial communities that contribute to Earth’s carbon cycling. However, the potential metabolic functions of individual microorganisms and their biogeographical distributions in hadal ocean sediments remain largely unexplored. In this study, we conducted single-cell genome sequencing on sediment samples collected from six sites (7,445–8,023 m water depth) along an approximately 500 km transect of the Japan Trench during the International Ocean Discovery Program Expedition 386. A total of 1,886 single-cell amplified genomes (SAGs) were obtained, offering comprehensive genetic insights into sedimentary microbial communities in surface sediments (<1 m depth) above the sulfate-methane transition zone along the Japan Trench. Our genome data set included 269 SAGs from Atribacterota JS1, the predominant bacterial clade in these hadal environments. Phylogenetic analysis classified SAGs into nine distinct phylotypes, whereas metagenome-assembled genomes were categorized into only two phylotypes, advancing JS1 diversity coverage through a single cell-based approach. Comparative genomic analysis of JS1 lineages from different habitats revealed frequent detection of genes related to organic carbon utilization, such as extracellular enzymes like clostripain and α-amylase, and ABC transporters of oligopeptide from Japan Trench members. Furthermore, specific JS1 phylotypes exhibited a strong correlation with in situ methane concentrations and contained genes involved in glycine betaine metabolism. These findings suggest that the phylogenomically diverse and novel Atribacterota JS1 is widely distributed in Japan Trench sediment, playing crucial roles in carbon cycling within the hadal sedimentary biosphere

    Paleoceanographic changes in the Northern East China Sea during the last 400 kyr as inferred from radiolarian assemblages (IODP Site U1429)

    No full text
    Abstract The East China Sea (ECS) is a shallow marginal sea that is sensitive to glacio-eustatic sea-level changes and is influenced by warm oligotrophic water of the Kuroshio Current (KC), the nutrient-rich Taiwan Warm Current, and freshwater discharges from rivers in southern China during the East Asian summer monsoon season. In this area, local paleoceanographic changes for times prior to 40 ka remain poorly studied because of high sediment accumulation rates on the seafloor. During Integrated Ocean Drilling Program Expedition 346, long sediment cores representing the last 400 kyr were retrieved from the northern part of the ECS (Site U1429). In these cores, radiolarians are abundant and well-preserved, thus using the ecological properties of radiolarians, we analyzed how glacio-eustatic sea-level variations have influenced the paleoceanography of the ECS over the last 400 kyr, with a focus on changes in water properties at intermediate depths. Additionally, the summer sea surface temperature (SST) and intermediate water temperature at about 500 m were quantified by means of data on selected radiolarian species. The KC influenced the shallow water at Site U1429 during each interglacial period over the last 400 kyr (marine isotope stages [MISs] 1, 5, 7, 9, and 11), causing a high summer SST (about 27 °C), although inflow of the KC into the ECS was probably delayed until after the sea-level maximum of interglacial MIS 1 and MIS 5. During this lag time, ECS shelf water was the dominant influence on the system. During glacial periods (MISs 2–4, 6, and 10), our data suggest that coastal conditions prevailed, probably because of a sea-level drop of more than 90 m. At these times, the summer SST was colder, ca. 20 °C. Changes in the relative abundance of Cycladophora davisiana indicate that the most significant changes in the bottom water occurred during MIS 6, when the bottom water likely became poorer in oxygen. An increase in the shallow-water primary productivity during MIS 7 and MIS 6 was probably the key factor causing the oxygen-poor conditions

    Paleoceanographic history of the Japan Sea over the last 9.5 million years inferred from radiolarian assemblages (IODP Expedition 346 Sites U1425 and U1430)

    No full text
    Abstract Previous studies showed that the evolution of the Japan Sea paleoceanography since the Miocene has been influenced by the regional tectonism (e.g., opening/closing of the connecting seaways) and regional/global climate. In the Japan Sea, Expedition 346 of the Integrated Ocean Drilling Program (IODP) retrieved core sediments dating back to the Miocene at two sites (U1425 and U1430). In this study, we reconstruct shallow-to-deep-water hydrography of the Japan Sea during the Mio-Pliocene based on radiolarian assemblages at Sites U1425 and U1430 considering the local tectonism and changes in global/regional climate. Our data suggest that glacioeustatic sea-level changes have probably had an influence on the local paleoceanography between 9.5 and 7.0 Ma. Indeed, warm water probably flowed from the North Pacific into the Japan Sea when sea level was high via shallow central and eastern seaways. In addition, the sill depth of the northern seaway was probably close to 1000 m between 9.5 and 7.8 Ma and had probably allowed inflow of oxygen minimum zone water from the North Pacific to the Japan Sea when sea level was high. In contrast, our data imply that Cycladophora nakasekoi, an endemic species to the Japan Sea, dominated between 9.5 and 7.3 Ma when sea level was low. Our data also suggest a progressive shoaling of the sill for the period since 7.8 Ma and that global climatic events such as such the late Miocene cooling (7.5–5.5 Ma) and the early Pliocene warmth have had a sustained influence on the Japan Sea. During the mid-Pliocene, a deep cooling of the subsurface to intermediate water of the Japan Sea likely occurred because species related to subarctic subsurface to intermediate waters were dominant between 5 and 3.8 Ma. The Northern Hemisphere Glaciation (ca. 3.0–2.7 Ma) and Mid-Pleistocene Transition (1.2–0.8 Ma) have both likely intensified the cooling of the Japan Sea

    Calcium carbonate, biogenic opal, and organic carbon content and d15N ratios of sediments from the Bering Sea

    No full text
    Millennial-scale paleoceanographic changes in the Bering Sea during the last 71 kyrs were reconstructed using geochemical and isotope proxies (biogenic opal, CaCO3, and total organic carbon (TOC), nitrogen and carbon isotopes of sedimentary organic matters) and microfossil (radiolaria and foraminifera) data from two cores (PC23A and PC24A) which were collected from the northern continental slope area at intermediate water depths. Biogenic opal and TOC contents were generally high with high sedimentation rates during the last deglaciation. Laminated sediment depositions during the Early-Holocene (EH) and Bølling-Allerød (BA) were closely related with the increased primary productivity recorded by high biogenic opal and TOC contents and high d15N values. Enhanced surface-water productivity was attributed to increased nutrient supply from strengthened Bering Slope Current (BSC) and from increased amount of glacial melt-water, resulting in high C/N ratios and low d13C values, and high proportion of Rhizoplegma boreale during the last deglaciation. In contrast, low surface-water productivity during the last glacial period was due to depleted nutrient supply caused by strong stratification and to restricted phytoplankton bloom by extensive sea ice distribution under cold climates. Extensive formation of sea ice produces more oxygen-rich intermediate-water, leading to oxic bottom-water conditions due to active ventilation, which favored good preservation of oxic benthic foraminifera species. Remarkable CaCO3 peaks coeval with high biogenic opal and TOC contents in both cores during MIS 3 to MIS 4 are most likely correlated with Dansgaard-Oeschger (D-O) events. High d15N and d13Corg values during D-O interstadials support increased surface-water productivity resulting from nutrients supplied mainly by intensified BSC. During the EH, BA and D-O interstadials, dominant benthic foraminifera species indicate dysoxic bottom-water conditions as a result of increased surface-water productivity and weak ventilation of intermediate-water with mitigated sea ice development caused by strengthening of the Alaskan Stream. It is of note that the bottom-water conditions and formation of intermediate-water in the Bering Sea during the last glacial period are related to the variation of dissolved oxygen concentration of the bottom-water in the northeastern Pacific and to strong ventilation of intermediate-water in the northwestern Pacific. Thus, the millennial-scale paleoceanographic events in the Bering Sea during the D-O interstadials are closely associated with the intermediate-water ventilation, ultimately leading to weakening of North Pacific Intermediate Water
    corecore