242 research outputs found

    人工靭帯へのケイ酸ストロンチウムアパタイトナノコートは骨形成を促進する

    Get PDF
    Background: Treatment of anterior cruciate ligament injuries commonly involves the use of polyethylene terephthalate (PET) artificial ligaments for reconstruction. However, the currently available methods require long fixation periods, thereby necessitating the development of alternative methods to accelerate the healing process between tendons and bones. Thus, we developed and evaluated a novel technique that utilizes silicate-substituted strontium (SrSiP). Methods: PET films, nano-coated with SrSiP, were prepared. Bone marrow mesenchymal cells (BMSCs) from femurs of male rats were cultured and seeded at a density of 1.0 × 104/cm2 onto the SrSiP-coated and non-coated PET film, and subsequently placed in an osteogenic medium. The osteocalcin concentration secreted into the medium was compared in each case. Next, PET artificial ligament, nano-coated with SrSiP, were prepared. BMSCs were seeded at a density of 4.5 × 105/cm2 onto the SrSiP-coated, and non-coated artificial ligament, and then placed in osteogenic medium. The osteocalcin and calcium concentrations in the culture medium were measured on the 8th, 10th, 12th, and 14th day of culture. Furthermore, mRNA expression of osteocalcin, alkaline phosphatase (ALP), bone morphogenetic protein-2 (BMP2), and runt-related transcription factor 2 (Runx2) was evaluated by qPCR. We transplanted the SrSiP-coated and non-coated artificial ligament to the tibiae of mature New Zealand white rabbits. Two months later, we sacrificed them and histologically evaluated them. Results: The secretory osteocalcin concentration in the medium on the film was significantly higher for the SrSiP group than for the non-coated group. Secretory osteocalcin concentration in the medium on the artificial ligament was also significantly higher in the SrSiP group than in the non-coated group on the 14th day. Calcium concentration on the artificial ligament was significantly lower in the SrSiP group than in the non-coated group on the 8th, 10th, 12th, and 14th day. In qPCR as well, OC, ALP, BMP2, and Runx2 mRNA expression were significantly higher in the SrSiP group than in the non-coated group. Newly formed bone was histologically found around the artificial ligament in the SrSiP group. Conclusions: Our findings demonstrate that artificial ligaments using SrSiP display high osteogenic potential and thus may be efficiently used in future clinical applications.博士(医学)・甲第724号・令和元年12月5日© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated

    Studies on the magnetic ground state of a spin Möbius strip

    Get PDF
    Here we report the synthesis, structure and detailed characterisation of three n-membered oxovanadium rings, Nan[(V=O)nNan(H2O)n(α, β, or γ-CD)2]⋅mH2O (n = 6, 7, or 8), prepared by the reactions of (V=O)SO4⋅xH2O with α, β, or γ-cyclodextrins(CDs) and NaOH in water. Their alternating heterometallic vanadium/sodium cyclic core structures were sandwiched between two CD moieties such that O-Na-O groups separated neighbouring vanadyl ions. Antiferromagnetic interactions between the S = ½ vanadyl ions led to S = 0 ground states for the even-membered rings, but to two quasi-degenerate S = ½ states for the spin-frustrated heptanuclear cluster

    The Rax homeoprotein in Müller glial cells is required for homeostasis maintenance of the postnatal mouse retina

    Get PDF
    Müller glial cells, which are the most predominant glial subtype in the retina, play multiple important roles, including the maintenance of structural integrity, homeostasis, and physiological functions of the retina. We have previously found that the Rax homeoprotein is expressed in postnatal and mature Müller glial cells in the mouse retina. However, the function of Rax in postnatal and mature Müller glial cells remains to be elucidated. In the current study, we first investigated Rax function in retinal development using retroviral lineage analysis and found that Rax controls the specification of late-born retinal cell types, including Müller glial cells in the postnatal retina. We next generated Rax tamoxifen–induced conditional KO (Rax iCKO) mice, where Rax can be depleted in mTFP-labeled Müller glial cells upon tamoxifen treatment, by crossing Raxflox/flox mice with Rlbp1-CreERT2 mice, which we have produced. Immunohistochemical analysis showed a characteristic of reactive gliosis and enhanced gliosis of Müller glial cells in Rax iCKO retinas under normal and stress conditions, respectively. We performed RNA-seq analysis on mTFP-positive cells purified from the Rax iCKO retina and found significantly reduced expression of suppressor of cytokine signaling-3 (Socs3). Reporter gene assays showed that Rax directly transactivates the Socs3 promoter. We observed decreased expression of Socs3 in Müller glial cells of Rax iCKO retinas by immunostaining. Taken together, the present results suggest that Rax suppresses inflammation in Müller glial cells by transactivating Socs3. This study sheds light on the transcriptional regulatory mechanisms underlying retinal Müller glial cell homeostasis.Yoshimoto T., Chaya T., Varner L.R., et al. The Rax homeoprotein in Müller glial cells is required for homeostasis maintenance of the postnatal mouse retina. Journal of Biological Chemistry 299, 105461 (2023); https://doi.org/10.1016/j.jbc.2023.105461

    Soluble Siglec-9 suppresses arthritis in a collagen-induced arthritis mouse model and inhibits M1 activation of RAW264.7 macrophages

    Get PDF
    Background: The aim of this study was to assess the effects of soluble sialic acid-binding immunoglobulin-type lectin (sSiglec)-9 on joint inflammation and destruction in a murine collagen-induced arthritis (CIA) model and in monolayer cultures of murine macrophages (RAW264.7 cells and peritoneal macrophages) and fibroblast-like synoviocytes (FLS) derived from patients with rheumatoid arthritis. Methods: DBA/1J mice were immunized with type II collagen. Effects of sSiglec-9 were evaluated using a physiologic arthritis score, histological analysis, serum tumor necrosis factor (TNF)-α concentration, and the proportion of forkhead box P3 (Foxp3)-positive regulatory T (Treg) cells. In vivo biofluorescence imaging was used to assess the distribution of sSiglec-9. Levels of M1 (TNF-α, interleukin [IL]-6, and inducible nitric oxide synthase) and M2 (CD206, Arginase-1, and IL-10) macrophage markers and phosphorylation of intracellular signaling molecules were examined in macrophages, and levels of matrix metalloproteinase (MMP)-1, MMP-3, and MMP-13 were examined in FLS. Results: sSiglec-9 significantly suppressed the clinical and histological incidence and severity of arthritis. The proportion of Foxp3-positive Treg cells significantly improved and serum TNF-α concentration decreased in vivo. Although sSiglec-9 reduced the expression of M1 markers in macrophages, it did not affect the expression of M2 markers and MMPs in FLS. Nuclear factor (NF)-kB p65 phosphorylation was attenuated by sSiglec-9, and chemical blockade of the NF-kB pathway reduced M1 marker expression in RAW264.7 cells. Conclusions: In this study, we have demonstrated the therapeutic effects of sSiglec-9 in a murine CIA model. The mechanism underlying these effects involves the suppression of M1 proinflammatory macrophages by inhibiting the NF-kB pathway. sSiglec-9 may provide a novel therapeutic option for patients with rheumatoid arthritis refractory to currently available drugs
    corecore