140 research outputs found

    Hydrothermal Aluminum-Phosphate-Sulfates in Ash from the 2014 Hydrothermal Eruption at Ontake Volcano, Central Honshu, Japan

    Get PDF
    Aluminum-phosphate-sulfates (APS) of the alunite supergroup occur in igneous rocks within zones of advanced argillic and silicic alteration in porphyry and epithermal ore environments. In this study we report on the presence of woodhouseite-rich APS in ash from the 27 September 2014 hydrothermal eruption of Ontake volcano. Scanning electron microscope coupled with energy dispersive X-ray spectrometer (SEM-EDS) and field emission (FE)-SEM-EDS observations show two types of occurrence of woodhouseite: (a) as cores within chemically zoned alunite-APS crystals (Zoned-alunite-woodhouseite-APS), and (b) as a coherent single-phase mineral in micro-veinlets intergrown with similar micro-veinlets of silica minerals (Micro-wormy-vein woodhouseite-APS). The genetic environment of APS minerals at Ontake volcano is that of a highly acidic hydrothermal system existing beneath the volcano summit, formed by condensation in magmatic steam and/or ground waters of sulfur-rich magmatic volatiles exsolved from the magma chamber beneath Mt. Ontake. Under these conditions, an advanced argillic alteration assemblage forms, which is composed of silica, pyrophyllite, alunite and kaolinite/dickite, plus APS, among other minerals. The discovery of woodhouseite in the volcanic ash of the Ontake 2014 hydrothermal eruption represents the first reported presence of APS within an active volcano. Other volcanoes in Japan and elsewhere with similar phreatic eruptions ejecting altered ash fragments will likely contain APS minerals derived from magmatic-hydrothermal systems within the subvolcanic environment. The presence of APS minerals within the advanced argillic zone below the summit vent of Ontake volcano, together with the prior documentation of phyllic and potassically altered ash fragments, provides evidence for the existence within an active volcano in Japan of an alteration column comparable to that of porphyry copper systems globally

    Glycosylated porphyra-334 and palythine-threonine from the terrestrial cyanobacterium nostoc commune

    Get PDF
    Mycosporine-like amino acids (MAAs) are water-soluble UV-absorbing pigments, and structurally different MAAs have been identified in eukaryotic algae and cyanobacteria. In this study novel glycosylated MAAs were found in the terrestrial cyanobacterium Nostoc commune (N. commune). An MAA with an absorption maximum at 334 nm was identified as a hexose-bound porphyra-334 derivative with a molecular mass of 508 Da. Another MAA with an absorption maximum at 322 nm was identified as a two hexose-bound palythine-threonine derivative with a molecular mass of 612 Da. These purified MAAs have radical scavenging activities in vitro, which suggests multifunctional roles as sunscreens and antioxidants. The 612-Da MAA accounted for approximately 60% of the total MAAs and contributed approximately 20% of the total radical scavenging activities in a water extract, indicating that it is the major water-soluble UV-protectant and radical scavenger component. The hexose-bound porphyra-334 derivative and the glycosylated palythine-threonine derivatives were found in a specific genotype of N. commune, suggesting that glycosylated MAA patterns could be a chemotaxonomic marker for the characterization of the morphologically indistinguishable N. commune. The glycosylation of porphyra-334 and palythine-threonine in N. commune suggests a unique adaptation for terrestrial environments that are drastically fluctuating in comparison to stable aquatic environments. © 2013 by the authors

    Clinical and laboratory predictors for plaque erosion in patients with acute coronary syndromes

    Full text link
    Background-—Plaque erosion is responsible for 25% to 40% of patients with acute coronary syndromes (ACS). Recent studies suggest that anti-thrombotic therapy without stenting may be an option for this subset of patients. Currently, however, an invasive procedure is required to make a diagnosis of plaque erosion. The aim of this study was to identify clinical or laboratory predictors of plaque erosion in patients with ACS to enable a diagnosis of erosion without additional invasive procedures. Methods and Results-—Patients with ACS who underwent optical coherence tomography imaging were selected from 11 institutions in 6 countries. The patients were classified into plaque rupture, plaque erosion, or calcified plaque, and predictors were identified using multivariable logistic modeling. Among 1241 patients with ACS, 477 (38.4%) patients were found to have plaque erosion. Plaque erosion was more frequent in non–ST-segment elevation-ACS than in ST-segment–elevation myocardial infarction (47.9% versus 29.8%, P=0.0002). Multivariable logistic regression models showed 5 independent parameters associated with plaque erosion: age 15.0 g/dL, and normal renal function. When all 5 parameters are present in a patient with non–ST-segment elevation-ACS, the probability of plaque erosion increased to 73.1%. Conclusions-—Clinical and laboratory parameters associatedwith plaque erosion are explored in this retrospective registry study. These parametersmay be useful to identify the subset ofACS patients with plaque erosion and guide themto conservativemanagement without invasive procedures. The results of this exploratory analysis need to be confirmed in large scale prospective clinical studiesDr. Jang has received an educational grant from Abbott Vascular and Medicure. Dr. Adriaenssens has received grants and consulting fees from Abbott Vascula

    結合インダクタを用いたCockcroft-Walton回路の出力電圧リップル低減に関する一検討

    No full text

    Hydrothermal Aluminum-Phosphate-Sulfates in Ash from the 2014 Hydrothermal Eruption at Ontake Volcano, Central Honshu, Japan

    No full text
    Aluminum-phosphate-sulfates (APS) of the alunite supergroup occur in igneous rocks within zones of advanced argillic and silicic alteration in porphyry and epithermal ore environments. In this study we report on the presence of woodhouseite-rich APS in ash from the 27 September 2014 hydrothermal eruption of Ontake volcano. Scanning electron microscope coupled with energy dispersive X-ray spectrometer (SEM-EDS) and field emission (FE)-SEM-EDS observations show two types of occurrence of woodhouseite: (a) as cores within chemically zoned alunite-APS crystals (Zoned-alunite-woodhouseite-APS), and (b) as a coherent single-phase mineral in micro-veinlets intergrown with similar micro-veinlets of silica minerals (Micro-wormy-vein woodhouseite-APS). The genetic environment of APS minerals at Ontake volcano is that of a highly acidic hydrothermal system existing beneath the volcano summit, formed by condensation in magmatic steam and/or ground waters of sulfur-rich magmatic volatiles exsolved from the magma chamber beneath Mt. Ontake. Under these conditions, an advanced argillic alteration assemblage forms, which is composed of silica, pyrophyllite, alunite and kaolinite/dickite, plus APS, among other minerals. The discovery of woodhouseite in the volcanic ash of the Ontake 2014 hydrothermal eruption represents the first reported presence of APS within an active volcano. Other volcanoes in Japan and elsewhere with similar phreatic eruptions ejecting altered ash fragments will likely contain APS minerals derived from magmatic-hydrothermal systems within the subvolcanic environment. The presence of APS minerals within the advanced argillic zone below the summit vent of Ontake volcano, together with the prior documentation of phyllic and potassically altered ash fragments, provides evidence for the existence within an active volcano in Japan of an alteration column comparable to that of porphyry copper systems globally

    Specific Activation of Yamanaka Factors via HSF1 Signaling in the Early Stage of Zebrafish Optic Nerve Regeneration

    No full text
    In contrast to the case in mammals, the fish optic nerve can spontaneously regenerate and visual function can be fully restored 3–4 months after optic nerve injury (ONI). However, the regenerative mechanism behind this has remained unknown. This long process is reminiscent of the normal development of the visual system from immature neural cells to mature neurons. Here, we focused on the expression of three Yamanaka factors (Oct4, Sox2, and Klf4: OSK), which are well-known inducers of induced pluripotent stem (iPS) cells in the zebrafish retina after ONI. mRNA expression of OSK was rapidly induced in the retinal ganglion cells (RGCs) 1–3 h after ONI. Heat shock factor 1 (HSF1) mRNA was most rapidly induced in the RGCs at 0.5 h. The activation of OSK mRNA was completely suppressed by the intraocular injection of HSF1 morpholino prior to ONI. Furthermore, the chromatin immunoprecipitation assay showed the enrichment of OSK genomic DNA bound to HSF1. The present study clearly showed that the rapid activation of Yamanaka factors in the zebrafish retina was regulated by HSF1, and this sequential activation of HSF1 and OSK might provide a key to unlocking the regenerative mechanism of injured RGCs in fish
    corecore