3,352 research outputs found
Signature of Carrier-Induced Ferromagnetism in Ti_{1-x}Co_{x}O_{2-delta}: Exchange Interaction Between High-Spin Co 2+ and the Ti 3d Conduction Band
X-ray photoemission spectroscopy measurements were performed on thin-film
samples of rutile Ti_{1-x}Co_{x}O_{2-delta} to reveal the electronic structure.
The Co 2p core level spectra indicate that the Co ions take the high-spin Co 2+
configuration, consistent with substitution on the Ti site. The high spin state
and the shift due to the exchange splitting of the conduction band suggest
strong hybridization between carriers in the Ti 3d t2g band and the t2g states
of the high-spin Co 2+. These observations support the argument that room
temperature ferromagnetism in Ti_{1-x}Co_{x}O_{2-delta} is intrinsic.Comment: 4 pages, 5 figures. Accepted for publication in Physical Review
Letter
Unusual superexchange pathways in a Ni triangular lattice of NiGaS with negative charge-transfer energy
We have studied the electronic structure of the Ni triangular lattice in
NiGaS using photoemission spectroscopy and subsequent model
calculations. The cluster-model analysis of the Ni 2 core-level spectrum
shows that the S 3 to Ni 3 charge-transfer energy is -1 eV and the
ground state is dominated by the configuration ( is a S 3 hole).
Cell perturbation analysis for the NiS triangular lattice indicates that
the strong S 3 hole character of the ground state provides the enhanced
superexchange interaction between the third nearest neighbor sites.Comment: 10 pages, 5 figures, accepted to PR
CTAD as a universal anticoagulant
The feasibility of CTAD (a mixture of citrate, theophylline, adenosine and dipyridamole) as a new anticoagulant for medical laboratory use was studied prospectively. Whole blood anticoagulated with CTAD exhibited results very similar to those of blood anticoagulated with EDTA on complete blood count and automated white cell differential except for a slight decrease in platelet count and mean platelet volume. Chemistry test data for plasma obtained from CTAD whole blood were close to those obtained for matched sera. Among coagulation tests, prothrombin time, activated partial thromboplastin time and fibrinogen concentrations were close to those obtained with citrate plasma. Based on the results, CTAD was judged to be a good candidate as a new anticoagulant
In-gap state and effect of light illumination in CuIrS probed by photoemission spectroscopy
We have studied disorder-induced in-gap states and effect of light
illumination in the insulating phase of spinel-type CuIrS using
ultra-violet photoemission spectroscopy (UPS). The Ir/Ir
charge-ordered gap appears below the metal-insulator transition temperature.
However, in the insulating phase, in-gap spectral features with are
observed in UPS just below the Fermi level (), corresponding to the
variable range hopping transport observed in resistivity. The spectral weight
at is not increased by light illumination, indicating that the
Ir-Ir dimer is very robust although the long-range octamer order
would be destructed by the photo-excitation. Present results suggest that the
Ir-Ir bipolaronic hopping and disorder effects are responsible
for the conductivity of CuIrS.Comment: 14 pages, 5 figure
First-principles study on the origin of large thermopower in hole-doped LaRhO3 and CuRhO2
Based on first-principles calculations, we study the origin of the large
thermopower in Ni-doped LaRhO3 and Mg-doped CuRhO2. We calculate the band
structure and construct the maximally localized Wannier functions from which a
tight binding Hamiltonian is obtained. The Seebeck coefficient is calculated
within the Boltzmann's equation approach using this effective Hamiltonian. For
LaRhO3, we find that the Seebeck coefficient remains nearly constant within a
large hole concentration range, which is consistent with the experimental
observation. For CuRhO2, the overall temperature dependence of the calculated
Seebeck coefficient is in excellent agreement with the experiment. The origin
of the large thermopower is discussed.Comment: 7 pages, to be published J. Phys.: Cond. Matt., Proc. QSD 200
Effect of Pt substitution on the electronic structure of AuTe2
We report a photoemission and x-ray absorption study on Au1-xPtxTe2 (x = 0
and 0.35) triangular lattice in which superconductivity is induced by Pt
substitution for Au. Au 4f and Te 3d core-level spectra of AuTe2 suggests a
valence state of Au2+(Te2)2-, which is consistent with its distorted crystal
structure with Te-Te dimers and compressed AuTe6 otahedra. On the other hand,
valence-band photoemission spectra and pre-edge peaks of Te 3d absorption edge
indicate that Au 5d bands are almost fully occupied and that Te 5p holes govern
the transport properties and the lattice distortion. The two apparently
conflicting pictures can be reconciled by strong Au 5d/Au 6s-Te 5p
hybridization. Absence of a core-level energy shift with Pt substitution is
inconsistent with the simple rigid band picture for hole doping. The Au 4f
core-level spectrum gets slightly narrow with Pt substitution, indicating that
the small Au 5d charge modulation in distorted AuTe2 is partially suppressed.Comment: 13 pages, 4 figures, accepted by Physical Review
- …