48 research outputs found

    Brain dopamine and serotonin differ in regulation and its consequences

    Get PDF
    Dopamine and serotonin (5-hydroxytryptamine or 5-HT) are neurotransmitters that are implicated in many psychological disorders. Although dopamine transmission in the brain has been studied extensively in vivo with fast scan cyclic voltammetry, detection of 5-HT using in vivo voltammetric methods has only recently been established. In this work we use two carbon-fiber microelectrodes to simultaneously measure dopamine release in the nucleus accumbens and 5-HT release in the substantia nigra pars reticulata, using a common stimulation in a single rat. We find that 5-HT release is profoundly restricted in comparison with dopamine release despite comparable tissue content levels. Using physiological and pharmacological analysis, we find that 5-HT transmission is mostly sensitive to uptake and metabolic degradation mechanisms. In contrast, dopamine transmission is constrained by synthesis and repackaging. Finally, we show that disruption of serotonergic regulatory mechanisms by simultaneous inhibition of uptake and metabolic degradation can have severe physiological consequences that mimic serotonin syndrome

    Biomimetic rehabilitation engineering: the importance of somatosensory feedback for brain-machine interfaces.

    Get PDF
    Brain-machine interfaces (BMIs) re-establish communication channels between the nervous system and an external device. The use of BMI technology has generated significant developments in rehabilitative medicine, promising new ways to restore lost sensory-motor functions. However and despite high-caliber basic research, only a few prototypes have successfully left the laboratory and are currently home-deployed. The failure of this laboratory-to-user transfer likely relates to the absence of BMI solutions for providing naturalistic feedback about the consequences of the BMI's actions. To overcome this limitation, nowadays cutting-edge BMI advances are guided by the principle of biomimicry; i.e. the artificial reproduction of normal neural mechanisms. Here, we focus on the importance of somatosensory feedback in BMIs devoted to reproducing movements with the goal of serving as a reference framework for future research on innovative rehabilitation procedures. First, we address the correspondence between users' needs and BMI solutions. Then, we describe the main features of invasive and non-invasive BMIs, including their degree of biomimicry and respective advantages and drawbacks. Furthermore, we explore the prevalent approaches for providing quasi-natural sensory feedback in BMI settings. Finally, we cover special situations that can promote biomimicry and we present the future directions in basic research and clinical applications. The continued incorporation of biomimetic features into the design of BMIs will surely serve to further ameliorate the realism of BMIs, as well as tremendously improve their actuation, acceptance, and use

    Minimizing the Discrimination Time for Quantum States of an Artificial Atom

    No full text
    Fast discrimination between quantum states of superconducting artificial atoms is an important ingredient for quantum information processing. In circuit quantum electrodynamics, increasing the signal-field amplitude in the readout resonator, dispersively coupled to the artificial atom, improves the signal-to-noise ratio and increases the measurement strength. Here, we employ this effect over 2 orders of magnitude in readout power, made possible by the unique combination of a dimer-Josephson-junction-array amplifier with a large dynamic range and the fact that the readout of our granular aluminum fluxonium artificial atom remains quantum nondemolition (QND) at relatively large photon numbers in the readout resonator, up to n = 110. Using Bayesian inference, this allows us to detect quantum jumps faster than the readout-resonator response time 2/κ, where κ is the bandwidth of the readout resonator

    Instrumentation for fast-scan cyclic voltammetry combined with electrophysiology for behavioral experiments in freely moving animals

    Get PDF
    Fast-scan cyclic voltammetry is a unique technique for sampling dopamine concentration in the brain of rodents in vivo in real time. The combination of in vivo voltammetry with single-unit electrophysiological recording from the same microelectrode has proved to be useful in studying the relationship between animal behavior, dopamine release and unit activity. The instrumentation for these experiments described here has two unique features. First, a 2-electrode arrangement implemented for voltammetric measurements with the grounded reference electrode allows compatibility with electrophysiological measurements, iontophoresis, and multielectrode measurements. Second, we use miniaturized electronic components in the design of a small headstage that can be fixed on the rat's head and used in freely moving animals
    corecore