53 research outputs found

    Supervillin slows cell spreading by facilitating myosin II activation at the cell periphery

    Get PDF
    During cell migration, myosin II modulates adhesion, cell protrusion and actin organization at the leading edge. We show that an F-actin- and membrane-associated scaffolding protein, called supervillin (SV, p205), binds directly to the subfragment 2 domains of nonmuscle myosin IIA and myosin IIB and to the N-terminus of the long form of myosin light chain kinase (L-MLCK). SV inhibits cell spreading via an MLCK- and myosin II-dependent mechanism. Overexpression of SV reduces the rate of cell spreading, and RNAi-mediated knockdown of endogenous SV increases it. Endogenous and EGFP-tagged SV colocalize with, and enhance the formation of, cortical bundles of F-actin and activated myosin II during early cell spreading. The effects of SV are reversed by inhibition of myosin heavy chain (MHC) ATPase (blebbistatin), MLCK (ML-7) or MEK (U0126), but not by inhibiting Rho-kinase with Y-27632. Flag-tagged L-MLCK co-localizes in cortical bundles with EGFP-SV, and kinase-dead L-MLCK disorganizes these bundles. The L-MLCK- and myosin-binding site in SV, SV1-171, rearranges and co-localizes with mono- and di-phosphorylated myosin light chain and with L-MLCK, but not with the short form of MLCK (S-MLCK) or with myosin phosphatase. Thus, the membrane protein SV apparently contributes to myosin II assembly during cell spreading by modulating myosin II regulation by L-MLCK

    Smooth muscle archvillin: a novel regulator of signaling and contractility in vascular smooth muscle

    Get PDF
    The mechanisms by which protein kinase C (PKC) and extracellular-signal-regulated kinases (ERK1/2) govern smooth-muscle contractility remain unclear. Calponin (CaP), an actin-binding protein and PKC substrate, mediates signaling through ERK1/2. We report here that CaP sequences containing the CaP homology (CH) domain bind to the C-terminal 251 amino acids of smooth-muscle archvillin (SmAV), a new splice variant of supervillin, which is a known actin- and myosin-II-binding protein. The CaP-SmAV interaction is demonstrated by reciprocal yeast two-hybrid and blot-overlay assays and by colocalization in COS-7 cells. In differentiated smooth muscle, endogenous SmAV and CaP co-fractionate and co-translocate to the cell cortex after stimulation by agonist. Antisense knockdown of SmAV in tissue inhibits both the activation of ERK1/2 and contractions stimulated by either agonist or PKC activation. This ERK1/2 signaling and contractile defect is similar to that observed in CaP knockdown experiments. In A7r5 smooth-muscle cells, PKC activation by phorbol esters induces the reorganization of endogenous, membrane-localized SmAV and microfilament-associated CaP into podosome-like structures that also contain F-actin, nonmuscle myosin IIB and ERK1/2. These results indicate that SmAV contributes to the regulation of contractility through a CaP-mediated signaling pathway, involving PKC activation and phosphorylation of ERK1/2

    Supervillin modulation of focal adhesions involving TRIP6/ZRP-1

    Get PDF
    Cellā€“substrate contacts, called focal adhesions (FAs), are dynamic in rapidly moving cells. We show that supervillin (SV)ā€”a peripheral membrane protein that binds myosin II and F-actin in such cellsā€”negatively regulates stress fibers, FAs, and cellā€“substrate adhesion. The major FA regulatory sequence within SV (SV342-571) binds to the LIM domains of two proteins in the zyxin family, thyroid receptorā€“interacting protein 6 (TRIP6) and lipoma-preferred partner (LPP), but not to zyxin itself. SV and TRIP6 colocalize within large FAs, where TRIP6 may help recruit SV. RNAi-mediated decreases in either protein increase cell adhesion to fibronectin. TRIP6 partially rescues SV effects on stress fibers and FAs, apparently by mislocating SV away from FAs. Thus, SV interactions with TRIP6 at FAs promote loss of FA structure and function. SV and TRIP6 binding partners suggest several specific mechanisms through which the SVā€“TRIP6 interaction may regulate FA maturation and/or disassembly

    Supervillin modulation of focal adhesions involving TRIP6/ZRP-1

    No full text
    Journal ArticleCell-substrate contacts, called focal adhesions (FAs), are dynamic in rapidly moving cells. We show that supervillin (SV)-a peripheral membrane protein that binds myosin II and F-actin in such cells-negatively regulates stress fibers, FAs, and cell-substrate adhesion. The major FA regulatory sequence within SV (SV342-571) binds to the LIM domains of two proteins in the zyxin family, thyroid receptor-interacting protein 6 (TRIP6) and lipoma-preferred partner (LPP), but not to zyxin itself

    The durability of phenolic adhesives

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre- DSC:D68909/86 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    • ā€¦
    corecore