80 research outputs found

    Validation of the cell cycle G2 delay assay in assessing ionizing radiation sensitivity and breast cancer risk

    Get PDF
    Genetic variations in cell cycle checkpoints and DNA repair genes are associated with prolonged cell cycle G2 delay following ionizing radiation (IR) treatment and breast cancer risk. However, different studies reported conflicting results examining the association between post-IR cell cycle delay and breast cancer risk utilizing four different parameters: cell cycle G2 delay index, %G2–M, G2/G0–G1, and (G2/G0–G1)/S. Therefore, we evaluated whether different parameters may influence study results using a data set from 118 breast cancer cases and 225 controls as well as lymphoblastoid and breast cancer cell lines with different genetic defects. Our results suggest that cell cycle G2 delay index may serve as the best parameter in assessing breast cancer risk, genetic regulation of IR-sensitivity, and mutations of ataxia telangiectasia mutated (ATM) and TP53. Cell cycle delay in 21 lymphoblastoid cell lines derived from BRCA1 mutation carriers was not different from that in controls. We also showed that IR-induced DNA-damage signaling, as measured by phosphorylation of H2AX on serine 139 (γ-H2AX) was inversely associated with cell cycle G2 delay index. In summary, the cellular responses to IR are extremely complex; mutations or genetic variations in DNA damage signaling, cell cycle checkpoints, and DNA repair contribute to cell cycle G2 delay and breast cancer risk. The cell cycle G2 delay assay characterized in this study may help identify subpopulations with elevated risk of breast cancer or susceptibility to adverse effects in normal tissue following radiotherapy

    Improving the Clinical Treatment of Vulnerable Populations in Radiation Oncology

    Get PDF
    The increasing role of radiation oncology in optimal cancer care treatment brings to mind the adage that power is never a gift, but a responsibility. A significant part of the responsibility we in radiation oncology bear is how to ensure optimal access to our services. This article summarizes the discussion initiated at the 2019 American Society for Radiation Oncology Annual Meeting educational panel entitled "Improving the Clinical Treatment of Vulnerable Populations in Radiation Oncology: Latin, African American, Native American, and Gender/Sexual Minority Communities." By bringing the discussion to the printed page, we hope to continue the conversation with a broader audience to better define the level of responsibility our field bears in optimizing cancer care to the most vulnerable patient populations within the United States

    Postmastectomy radiation for stage ll breast cancer patients with T1/T2 lesions.

    No full text
    corecore