17 research outputs found
Spin-orbit interaction in three-dimensionally bounded semiconductor nanostructures
The structural inversion asymmetry-induced spin-orbit interaction of
conduction band electrons in zinc-blende and wurtzite semiconductor structures
is analysed allowing for a three-dimensional (3D) character of the external
electric field and variation of the chemical composition. The interaction,
taking into account all remote bands perturbatively, is presented with two
contributions: a heterointerface term and a term caused by the external
electric field. They have generally comparable strength and can be written in a
unified manner only for 2D systems, where they can partially cancel each other.
For quantum wires and dots composed of wurtzite semiconductors new terms
appear, absent in zinc-blende structures, which acquire the standard Rashba
form in 2D systems.Comment: 18 pages, 1 figur
Interface electronic states and boundary conditions for envelope functions
The envelope-function method with generalized boundary conditions is applied
to the description of localized and resonant interface states. A complete set
of phenomenological conditions which restrict the form of connection rules for
envelope functions is derived using the Hermiticity and symmetry requirements.
Empirical coefficients in the connection rules play role of material parameters
which characterize an internal structure of every particular heterointerface.
As an illustration we present the derivation of the most general connection
rules for the one-band effective mass and 4-band Kane models. The conditions
for the existence of Tamm-like localized interface states are established. It
is shown that a nontrivial form of the connection rules can also result in the
formation of resonant states. The most transparent manifestation of such states
is the resonant tunneling through a single-barrier heterostructure.Comment: RevTeX4, 11 pages, 5 eps figures, submitted to Phys.Rev.