27 research outputs found

    On the role of electron-phonon interaction in the resistance anisotropy of two-dimensional electrons in GaAs heterostructures

    Full text link
    A contribution of the electron-phonon interaction into the energy of a unidirectional charge ordered state (stripe phase) of two-dimensional electrons in GaAs heterostructures is analyzed. The dependence of the energy on the direction of the electron density modulation is calculated. It is shown that in electrons layers situated close to the (001) surface the interference between the piezoelectric and the deformation potential interaction causes a preferential orientation of the stripes along the [110] axis.Comment: 9 pages, accepted for publication in Journal of Physics: Condensed Matte

    Spin-orbit interaction in three-dimensionally bounded semiconductor nanostructures

    Get PDF
    The structural inversion asymmetry-induced spin-orbit interaction of conduction band electrons in zinc-blende and wurtzite semiconductor structures is analysed allowing for a three-dimensional (3D) character of the external electric field and variation of the chemical composition. The interaction, taking into account all remote bands perturbatively, is presented with two contributions: a heterointerface term and a term caused by the external electric field. They have generally comparable strength and can be written in a unified manner only for 2D systems, where they can partially cancel each other. For quantum wires and dots composed of wurtzite semiconductors new terms appear, absent in zinc-blende structures, which acquire the standard Rashba form in 2D systems.Comment: 18 pages, 1 figur

    Anomalous far infrared monochromatic transmission through a film of type-II superconductor in magnetic field

    Full text link
    Anomalous far infrared monochromatic transmission through a lattice of Abrikosov vortices in a type-II superconducting film is found and reported. The transmitted frequency corresponds to the photonic mode localized by the defects of the Abrokosov lattice. These defects are formed by extra vortices placed out of the nodes of the ideal Abrokosov lattice. The extra vortices can be pinned by crystal lattice defects of a superconductor. The corresponding frequency is studied as a function of magnetic field and temperature in the framework of the Dirac-type two-band model. While our approach is valid for all type-II superconductors, the specific calculations have been performed for the YBa2_{2}Cu3_{3}O7δ_{7-\delta} (YBCO). The control of the transmitted frequency by varying magnetic field and/or temperature is analyzed. It is suggested that found anomalously transmitted localized mode can be utilized in the far infrared monochromatic filters.Comment: 9 pages, 2 figure

    Least action principle for envelope functions in abrupt heterostructures

    Full text link
    We apply the envelope function approach to abrupt heterostructures starting with the least action principle for the microscopic wave function. The interface is treated nonperturbatively, and our approach is applicable to mismatched heterostructure. We obtain the interface connection rules for the multiband envelope function and the short-range interface terms which consist of two physically distinct contributions. The first one depends only on the structure of the interface, and the second one is completely determined by the bulk parameters. We discover new structure inversion asymmetry terms and new magnetic energy terms important in spintronic applications.Comment: 4 pages, 1 figur

    Interface electronic states and boundary conditions for envelope functions

    Full text link
    The envelope-function method with generalized boundary conditions is applied to the description of localized and resonant interface states. A complete set of phenomenological conditions which restrict the form of connection rules for envelope functions is derived using the Hermiticity and symmetry requirements. Empirical coefficients in the connection rules play role of material parameters which characterize an internal structure of every particular heterointerface. As an illustration we present the derivation of the most general connection rules for the one-band effective mass and 4-band Kane models. The conditions for the existence of Tamm-like localized interface states are established. It is shown that a nontrivial form of the connection rules can also result in the formation of resonant states. The most transparent manifestation of such states is the resonant tunneling through a single-barrier heterostructure.Comment: RevTeX4, 11 pages, 5 eps figures, submitted to Phys.Rev.

    First-principles envelope-function theory for lattice-matched semiconductor heterostructures

    Full text link
    In this paper a multi-band envelope-function Hamiltonian for lattice-matched semiconductor heterostructures is derived from first-principles norm-conserving pseudopotentials. The theory is applicable to isovalent or heterovalent heterostructures with macroscopically neutral interfaces and no spontaneous bulk polarization. The key assumption -- proved in earlier numerical studies -- is that the heterostructure can be treated as a weak perturbation with respect to some periodic reference crystal, with the nonlinear response small in comparison to the linear response. Quadratic response theory is then used in conjunction with k.p perturbation theory to develop a multi-band effective-mass Hamiltonian (for slowly varying envelope functions) in which all interface band-mixing effects are determined by the linear response. To within terms of the same order as the position dependence of the effective mass, the quadratic response contributes only a bulk band offset term and an interface dipole term, both of which are diagonal in the effective-mass Hamiltonian. Long-range multipole Coulomb fields arise in quantum wires or dots, but have no qualitative effect in two-dimensional systems beyond a dipole contribution to the band offsets.Comment: 25 pages, no figures, RevTeX4; v3: final published versio
    corecore