577 research outputs found

    Analysis of the Demagnetization Process of Nd-Fe-B Sintered Magnets at Elevated Temperatures by Magnetic Domain Observation Using a Kerr Microscope

    Get PDF
    Magnetization reversal and its propagation in sintered Nd–Fe–B magnets were clearly observed at elevated temperatures up to 150 °C using a Kerr microscope, image processing, and photo editing. Simultaneous magnetization reversal in several grains along the easy axis direction occurred at elevated temperature, and the extent of simultaneous magnetization reversal increased with temperature. This indicates that reduction in the coercivity of Nd–Fe–B sintered magnets at elevated temperatures is attributable to decrease in anisotropy and insufficient pinning of domain walls at grain boundaries

    Relationship Between Output of a Fluxgate Sensor and Magnetization Process of Its Core

    Get PDF
    Motivated by the need to miniaturize fluxgate sensors, we investigated the dependence of the sensitivity of fluxgate sensors on the saturation flux density and magnetostriction of an amorphous ribbon core. In addition, the relationship between the sensing properties and the magnetization process of its core was investigated with a Kerr microscope. We found that the sensitivity decreased with an increase in magnetostriction. Highly magnetostrictive amorphous ribbons exhibited maze domains that were difficult to move by applying a low magnetic field of a few hundred amperes per meter. This effect caused a decrease in the sensitivity of the sensors

    Miniaturization of High-Frequency Carrier-Type Thin-Film Magnetic Field Sensor Using Laminated Film

    Get PDF
    We examined a laminated high-frequency carrier-type thin-film magnetic field sensor that consists of CoNbZr soft magnetic films with Nb nonmagnetic conductive interlayer. The lamination can change domain structure of the sensor and obtain high sensitivity. An impedance change of 6 /spl Omega/ and a gain of 43 k/spl Omega//T was achieved when the length of the laminated sensor was 1 mm. The gain is four times larger than that of a monolayer sensor

    Domain Wall Pinning by Step-Like Thickness Change in Magnetic Thin Film

    Get PDF
    A thin-film element with a steplike thickness change has been fabricated to investigate experimentally a pinning effect of domain walls by a shape control of thin-film devices. Using a Kerr microscope, domain observation has been done to measure pinning characteristics of the element. It has been shown that 40% steplike thickness change of the film thickness can realize a wall pinning, and a pinning field of 2.53 Oe is obtained. The pinning field increases with increasing steplike thickness change ratio

    London equation studies of thin-film superconductors with a triangular antidot lattice

    Full text link
    We report on a study of vortex pinning in nanoscale antidot defect arrays in the context of the London Theory. Using a wire network model, we discretize the array with a fine mesh, thereby providing a detailed treatment of pinning phenomena. The use of a fine grid has enabled us to examine both circular and elongated defects, patterned in the form of a rhombus. The latter display pinning characteristics superior to circular defects constructed with the similar area. We calculate pinning potentials for defects containing zero and single quanta, and we obtain a pinning phase diagram for the second matching field, H=2ΦoH = 2 \Phi_{o}.Comment: 10 pages and 14 figure

    Design methodology using topology optimization for anti- vibration reinforcement of generators in a ship’s engine room

    Get PDF
    Structural optimization for reinforcing the anti-vibration characteristics of the generators in the engine room of a ship is presented. To improve the vibration characteristics of the structures, topology optimization methods can be effective because they can optimize the fundamental characteristics of the structure with their ability to change the topology of the target structure. Topology optimization is used to improve the characteristics of the anti-vibration reinforcement of the generators in the engine room. First, an experimentally observed vibration phenomenon is simulated using the finite element method for frequency response problems. Next, the objective function used in topology optimization is set as the dynamic work done by the load based on the energy equilibrium of the structural vibration. The optimization problem is then constructed by adding the volume constraint. Finally, based on finite element analysis and the optimization problem, topology optimization is performed on several vibration cases to improve their performance and reduce weight.This work was supported by the JSPS KAKENHI Grant Numbers 24360356 and 25820422
    corecore