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at elevated temperatures by magnetic domain observation using a Kerr
microscope
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Department of Applied Science for Integrated System Engineering, Faculty of Engineering, Kyushu Institute
of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu, Fukuoka 804-8550, Japan

(Presented 5 November 2013; received 23 September 2013; accepted 25 November 2013; published

online 25 February 2014)

Magnetization reversal and its propagation in sintered Nd–Fe–B magnets were clearly observed at

elevated temperatures up to 150 �C using a Kerr microscope, image processing, and photo editing.

Simultaneous magnetization reversal in several grains along the easy axis direction occurred at

elevated temperature, and the extent of simultaneous magnetization reversal increased with

temperature. This indicates that reduction in the coercivity of Nd–Fe–B sintered magnets at elevated

temperatures is attributable to decrease in anisotropy and insufficient pinning of domain walls at

grain boundaries. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4866894]

I. INTRODUCTION

Electrical vehicles require heat-resistant Nd–Fe–B high-

coercivity magnets. Because thermal stability up to temperature

of 200 �C is required for electrical vehicles, a very high coerciv-

ity of 30 kOe is necessary at room temperature. Therefore, to

enhance coercivity, commercially available Nd–Fe–B magnets

containing a large amount of the rare metal Dysprosium (Dy)

are used.1,2 However, low natural abundance of Dy is a crucial

resource problem. A Kerr microscope is useful for in situ domain

observations of high magnetic fields at high temperatures.3,4

Through domain observation using an in-situ Kerr microscope,

we have previously reported that the extent of the simultaneous

magnetization-reversal area is related to the coercivity of

Nd–Fe–B sintered magnets.5 In this study, we examine the mag-

netization process at elevated temperatures by an image-

processing technique using a Kerr microscope in order to clarify

the reason for decrease in the coercivity of sintered Nd–Fe–B

magnets at elevated temperatures through domain observation.

II. EXPERIMENTAL DATA

The magnetic domain of commercially available Nd–Fe–B

sintered magnet for a voice coil motor was observed using a

Kerr microscope. The intrinsic coercivity of the sample was

approximately 14 kOe. The magnet was cut into samples

3.5 mm thick, 9.0 mm long, and 5.0 mm wide, and the sample

surfaces were polished to clearly reveal the domain configura-

tion during experiments. The magnets were cut at an angle of

10� to c-axis to obtain information about the domain configura-

tion underneath the surface, as described elsewhere.6 A

Tantalum (Ta) thin film was deposited by RF sputtering on sur-

face of the Nd–Fe–B sintered magnets to prevent oxidation.

Then, a SiO thin film was also deposited on the Ta thin film by

vacuum evaporation and functioned as an antireflection coating.

The Kerr microscope was built in a temperature-

controlled stage with an electromagnet that produced a high

magnetic field up to 14.2 kOe. The demagnetization process

of a previously magnetized magnet was accomplished with a

pulse field of þ50 kOe. The magnetization/demagnetization

process was observed by applying a DC field from þ14.2 to

�14.2 kOe along the easy axis direction of the magnet, and

the samples were evaluated from 25 �C to 150 �C. For

detailed observation of magnetization reversal at elevated

temperatures, we derived the domain change by subtracting

the domain image in an applied field from that in another

applied field using a photo-editing application.5

III. RESULTS AND DISCUSSION

Figure 1 shows domain images of an Nd–Fe–B sintered

magnet sample when a DC field from þ14.2 to �14.2 kOe

was applied along the longitudinal direction at room

FIG. 1. Magnetic domain images at 25 �C with an applied DC field of: (a)

þ2.0 kOe, (b) þ1.7 kOe, (c) 0, and (d) �4.0 kOe.a)Electronic mail: take@ele.kyutech.ac.jp.

0021-8979/2014/115(17)/17A733/3/$30.00 VC 2014 AIP Publishing LLC115, 17A733-1
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temperature (25 �C). The bright and dark domains are mag-

netized in leftward and rightward directions, respectively.

The grain size is about 10 lm. When the DC field was

decreased from þ14.2 kOe to þ2.0 kOe in the rightward

direction, all grains exhibited dark domains having rightward

magnetization components (Fig. 1(a)). The data indicate that

a saturated state was obtained at that field value. When the

DC field was decreased to þ1.7 kOe, the reversed domains

nucleated, and the domain structure changed from a single

domain state to a multi-domain state in one grain, as indi-

cated by the arrow in Fig. 1(b). The reversed domains grew

when the DC field was changed to 0, marked by the solid

line ellipse in Fig. 1(c). Simultaneous magnetization reversal

in several grains beyond the grain boundaries along the easy

axis direction was also observed when the DC field was

reduced to zero, marked by the dotted-line ellipses in Fig. 1(c).

When the DC field reached �4.0 kOe, all grains, exhibiting

bright domains, were inversely saturated (Fig. 1(d)).

Figure 2 shows domain images of the Nd–Fe–B sintered

magnet at an elevated temperature of 60 �C. Figure 2(a)

shows that saturation occurred at þ1.0 kOe. The domain

structure changed from a single domain state to a multi-

domain state in some grains at þ0.5 kOe, marked by the

ellipse in Fig. 2(b). When the DC field changed to �0.1 kOe,

the reversed domains grew and simultaneous magnetization

reversal in several grains was observed, as marked by the

FIG. 2. Magnetic domain images at 60 �C with an applied DC field of:

(a) þ1.0 kOe, (b) þ0.5 kOe, (c) �0.1 kOe, and (d) �3.0 kOe.

FIG. 3. Magnetic domain images at 150 �C with an applied DC field: (a)

þ2.0 kOe, (b) þ1.5 kOe, (c) þ1.3 kOe, and (d) 0 kOe.
FIG. 4. Processed images indicating the area of magnetization reversal at:

(a) 25 �C, (b) 60 �C, and (c) 150 �C.
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ellipse in Fig. 2(c). All grains were inversely saturated at

�3.0 kOe (Fig. 2(d)), a lower negative field than the inverse

saturation field at room temperature.

Figure 3 shows domain images of the Nd–Fe–B sintered

magnet at an elevated temperature of 150 �C. Figure 3(a)

shows that saturation occurred at þ2.0 kOe. Nucleation of

the reversed domain appeared at a DC field of þ1.5 kOe at

150 �C, as indicated by the arrow in Fig. 3(b). When the DC

field changed to þ1.3 kOe, the reversed domains grew and

simultaneous magnetization reversal in several grains was

observed, marked by the ellipse in Fig. 3(c). All grains were

inversely saturated at a field value of zero (Fig. 3(d)), a lower

negative field than the inverse saturation field strengths at

60 �C and 25 �C.

Figure 4 shows the image-processed domain images

indicating the magnetization-reversal area for each magnetic

field strength at temperatures of 25 �C, 60 �C, and 150 �C.

The simultaneous magnetization reversal in a few grains

occurred with an applied DC field from �2.0 to �4.0 kOe at

room temperature, as shown in Fig. 4(a). On the other hand,

at 60 �C, the simultaneous magnetization reversal in several

grains occurred with an applied DC field from 0 to �1.0 kOe

that is a lower negative field than that at room temperature.

The applied DC field that caused the simultaneous magnet-

ization reversal in several grains at 150 �C was from þ1.5

kOe to 0 kOe (Fig. 4(c)). These data show that magnetization

reversal is more likely to occur at elevated temperatures and

that the negative magnetic field that causes saturation

decreases with increasing temperature.

Note that the extent of simultaneous magnetization re-

versal also increases with temperature. Although the extent

of simultaneous magnetization reversal is a few grains at

room temperature, reversal involves several grains at 60 �C
and 150 �C. The magnetization reversal beyond the grain

boundaries was found to easily occur with increasing tem-

perature because the crystal magnetic anisotropy of

Nd–Fe–B decreases and the hard magnetic properties deteri-

orate. Furthermore, one of the reasons for the increase in the

extent of simultaneous magnetization reversal is the decrease

in the pinning force of domain wall motion at the grain boun-

daries at elevated temperatures. The results are consistent

with recent work about the influence of the decrease in ani-

sotropy at grain boundaries on the coercivity, as published

by Hrkac et al.7,8 Therefore, maintaining a high pinning

force at grain boundaries at elevated temperatures is impor-

tant to realize heat-resistant sintered Nd–Fe–B magnets.

IV. CONCLUSION

In the present study, magnetization reversal and its prop-

agation in sintered Nd–Fe–B magnets at elevated tempera-

tures up to 150 �C were clearly observed using a Kerr

microscope, image processing, and photo editing. We found

that simultaneous magnetization reversal in several grains

along the easy axis direction occurred at elevated tempera-

tures, and the extent of simultaneous magnetization reversal

increases with temperature. This indicates that reduction in

the coercivity of Nd–Fe–B sintered magnets at elevated

temperatures is attributable to a decrease in anisotropy and

insufficient pinning of domain walls at grain boundaries. In

our future work, it will be necessary to investigate the rela-

tionship between simultaneous magnetization reversal and

the microstructure of Nd–Fe–B sintered magnets.
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