530 research outputs found

    Chronic Inflammation in the Epidermis: A Mathematical Model

    Get PDF
    The epidermal tissue is the outmost component of the skin that plays an important role as a first barrier system in preventing the invasion of various environmental agents, such as bacteria. Recent studies have identified the importance of microbial competition between harmful and beneficial bacteria and the diversity of the skin surface on our health. We develop mathematical models (M1 and M2 models) for the inflammation process using ordinary differential equations and delay differential equations. In this paper, we study microbial community dynamics via transcription factors, protease and extracellular cytokines. We investigate possible mechanisms to induce community composition shift and analyze the vigorous competition dynamics between harmful and beneficial bacteria through immune activities. We found that the activation of proteases from the transcription factor within a cell plays a significant role in the regulation of bacterial persistence in the M1 model. The competition model (M2) predicts that different cytokine clearance levels may lead to a harmful bacteria persisting system, a bad bacteria-free state and the co-existence of harmful and good bacterial populations in Type I dynamics, while a bi-stable system without co-existence is illustrated in the Type II dynamics. This illustrates a possible phenotypic switch among harmful and good bacterial populations in a microenvironment. We also found that large time delays in the activation of immune responses on the dynamics of those bacterial populations lead to the onset of oscillations in harmful bacteria and immune activities. The mathematical model suggests possible annihilation of time-delay-driven oscillations by therapeutic drugs.ope

    Ligand-triggered resistance to molecular targeted drugs in lung cancer: Roles of hepatocyte growth factor and epidermal growth factor receptor ligands

    Get PDF
    がん進展制御研究所Recent advances in molecular biology have led to the identification of new molecular targets, such as epidermal growth factor receptor (EGFR) mutations and echinoderm microtubule-associated protein-like 4 (EML4) - anaplastic lymphoma kinase (ALK) fusion gene, in lung cancer. Dramatic response has been achieved with EGFR inhibitors (gefitinib and erlotinib) and an ALK inhibitor (crizotinib) in lung cancer expressing corresponding targets. However, cancer cells acquire resistance to these drugs and cause recurrence. Known major mechanisms for resistance to molecular targeted drugs include gatekeeper mutations in the target gene and activation of bypass survival signal via receptors other than the target receptors. The latter mechanism can involve receptor gene amplification and ligand-triggered receptor activation as well. For example, hepatocyte growth factor (HGF), the ligand of a tyrosine kinase receptor Met, activates Met and the downstream PI3K/Akt pathway and triggers resistance to EGFR inhibitors in EGFR mutant lung cancer cells. Moreover, EGFR ligands activate EGFR and downstream pathways and trigger resistance to crizotinib in EML4-ALK lung cancer cells. These observations indicate that signals from oncogenic drivers (EGFR signaling in EGFR -mutant lung cancer and ALK signaling in EML4-ALK lung cancer) and ligand-triggered bypass signals (HGF-Met and EGFR ligands-EGFR, respectively) must be simultaneously blocked to avoid the resistance. This review focuses specifically on receptor activation by ligand stimulation and discusses novel therapeutic strategies that are under development for overcoming resistance to molecular targeted drugs in lung cancer. © 2012 Japanese Cancer Association

    青色光は滑膜肉腫に対して活性酸素種によるミトコンドリア機能障害を起こし、アポトーシスとオートファジーを誘導する

    Get PDF
    Background: Synovial sarcoma (SS) has limited treatment options and there is an urgent need to develop a novel therapeutic strategy to treat SS. Blue light (BL) has been shown to inhibit the growth of several cancer cells. However, the efficacy of BL in soft tissue sarcomas such as SS has not been demonstrated, and the detailed mechanism underlying the antitumor activity of BL is not fully understood. In this study, we investigated the antitumor effect of BL on SS. Methods: Human SS cell lines were continuously irradiated with BL using light-emitting diodes (LEDs) in an incubator for in vitro analysis. The chicken chorioallantoic membrane (CAM) tumors and xenograft tumors in mice were subjected to daily BL irradiation with LEDs. Results: BL caused growth inhibition of SS cells and histological changes in CAM tumors. BL also suppressed the migration and invasion abilities of SS cells. The type of cell death in SS cells was revealed to be apoptosis. Furthermore, BL induced excessive production of reactive oxygen species (ROS) in mitochondria, resulting in oxidative stress and malfunctioned mitochondria. Reducing the production of ROS using N-acetylcysteine (NAC), a ROS scavenger, attenuated the inhibitory effect of BL on SS cells and mitochondrial dysfunction. In addition, BL induced autophagy, which was suppressed by the administration of NAC. The autophagy inhibitor of 3-methyladenine and small interfering RNA against the autophagy marker light chain 3B facilitated apoptotic cell death. Moreover, BL suppressed tumor growth in a mouse xenograft model. Conclusion: Taken together, our results revealed that BL induced apoptosis via the ROS-mitochondrial signaling pathway, and autophagy was activated in response to the production of ROS, which protected SS cells from apoptosis. Therefore, BL is a promising candidate for the development of an antitumor therapeutic strategy targeting SS

    An Efficiency Degradation Model of Power Amplifier and the Impact against Transmission Power Control for Wireless Sensor Networks

    Full text link
    Abstract—To extend an available period of wireless sensor networks, transmission power control is regarded as one of the promising schemes. In most of the previous studies on the transmission power control, it is assumed that a transmitter has power consumption of O(dn), where d and n denote a maximum communication distance and a pass loss factor. This assumption would substantially hold under the condition that the transmission efficiency is always constant at any transmission power (efficiency-fixed model). In practice, however, the trans-mission efficiency degrades as the transmission power is reduced. We analytically verify that an actual power amplifier with the efficiency degradation has a power consumption of O(dr), where n/2.8 ≤ r ≤ n/2 (efficiency-degradation model). The efficiency-degradation model gives the negative impact against the transmission power control. Index Terms—Wireless sensor network, transmission power control, transmission efficiency, pass loss factor. I

    Resminostat in EGFR-mutated lung cancer

    Get PDF
    Drug-tolerant cells are mediators of acquired resistance. BIM-intron2 deletion polymorphism (BIM-del) is one of the mechanisms underlying the resistance to epidermal growth factor tyrosine kinase inhibitor (EGFR-TKI)-mediated apoptosis that induces drug tolerance. Here, we investigated whether resminostat, a histone deacetylase inhibitor, circumvents BIM-del-associated apoptosis resistance. The human EGFR-mutated non-small cell lung cancer (NSCLC) cell line PC-9 and its homozygous BIM-del-positive variant (PC-9 BIMi2-/-), established by editing with zinc finger nuclease, were used. In comparison with PC-9 cells, PC-9 BIMi2-/- cells were less sensitive to apoptosis mediated by EGFR-TKIs such as gefitinib and osimertinib. The combined use of resminostat and an EGFR-TKI preferentially induced the expression of the pro-apoptotic BIM transcript containing exon 4 rather than that containing exon 3, increased the level of pro-apoptotic BIM protein (BIMEL), and stimulated apoptosis in vitro. In a subcutaneous tumor model derived from PC-9 BIMi2-/- cells, gefitinib monotherapy decreased tumor size but retained residual lesions, indicative of the presence of tolerant cells in tumors. The combined use of resminostat and gefitinib increased BIMEL protein level and induced apoptosis, subsequently leading to the remarkable shrinkage of tumor. These findings suggest the potential of resminostat to circumvent tolerance to EGFR-TKIs associated with BIM deletion polymorphism

    The association between hypothyroidism and proteinuria in patients with chronic kidney disease: a cross-sectional study

    Get PDF
    Hypothyroidism is known to be correlated with kidney function and nephrotic range proteinuria. However, it is uncertain whether non-nephrotic proteinuria is associated with hypothyroidism. This study aimed to evaluate the association of proteinuria and hypothyroidism in chronic kidney disease (CKD) patients. We conducted a cross-sectional study composed of 421 CKD patients in a single hospital with measurements of 24-h urine protein excretion (UP) and thyroid function tests. Spearman correlation analysis revealed that 24-h Cr clearance (24hrCcr) was positively (r = 0.273, p < 0.001) and UP was negatively (r = - 0.207, p < 0.001) correlated with free triiodothyronine. Frequency distribution analysis stratified by CKD stage and UP for hypothyroidism revealed that the prevalence of hypothyroidism was higher among participants with higher CKD stage and nephrotic range proteinuria. Multivariate logistic regression analysis revealed that 24hrCcr and UP were significantly correlated with hypothyroidism (24hrCcr/10 mL/min decrease: odds ratio [OR], 1.29; 95% confidence interval [CI], 1.18-1.41; UP/1 g increase: OR, 1.10; 95% CI, 1.03-1.17). In addition, nephrotic range proteinuria, but not moderate UP (UP: 1.5-3.49 g/day), was significantly correlated with hypothyroidism compared to UP < 0.5 g/day. In summary, decreased kidney function and nephrotic range proteinuria, not non-nephrotic proteinuria, are independently associated with the hypothyroidism

    Development of ultrafast camera-based single fluorescent-molecule imaging for cell biology

    Get PDF
    細胞膜上の分子がバレエの群舞のように見えてきた: 1蛍光分子の感度で、究極速度で撮像できるカメラを開発. 京都大学プレスリリース. 2023-06-06.The spatial resolution of fluorescence microscopy has recently been greatly enhanced. However, improvements in temporal resolution have been limited, despite their importance for examining living cells. Here, we developed an ultrafast camera system that enables the highest time resolutions in single fluorescent-molecule imaging to date, which were photon-limited by fluorophore photophysics: 33 and 100 µs with single-molecule localization precisions of 34 and 20 nm, respectively, for Cy3, the optimal fluorophore we identified. Using theoretical frameworks developed for the analysis of single-molecule trajectories in the plasma membrane (PM), this camera successfully detected fast hop diffusion of membrane molecules in the PM, previously detectable only in the apical PM using less preferable 40-nm gold probes, thus helping to elucidate the principles governing the PM organization and molecular dynamics. Furthermore, as described in the companion paper, this camera allows simultaneous data acquisitions for PALM/dSTORM at as fast as 1 kHz, with 29/19 nm localization precisions in the 640 × 640 pixel view-field

    X-ray absorption spectroscopy and novel electronic properties in heavy fermion compounds YbT2Zn20 (T: Rh and Ir)

    Get PDF
    YbT2Zn20 (T: Rh and Ir), which crystallizes in the cubic CeCr2Al20-type structure, is a member of the well-known heavy fermion compounds, indicating a huge electronic specific heat coefficient γ ≊ 500 mJ/(K2centerdotmol). We have measured temperature and magnetic field dependences of Yb valence in YbT2Zn20(T: Rh and Ir) at ambient pressure by the Lm edge x- ray absorption spectroscopy in order to investigate the valence state of Yb 4f electrons in these compounds. It is revealed that the Yb valence in both compounds significantly decreases with temperature below about 100 K and increases with increasing magnetic field at low temperatures in contrast to the case of YbCo2Zn20.International Conference on Strongly Correlated Electron Systems 2014 (SCES2014), 7–14 July 2014, Grenoble, Franc
    corecore