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Abstract: The epidermal tissue is the outmost component of the skin that plays an important
role as a first barrier system in preventing the invasion of various environmental agents, such
as bacteria. Recent studies have identified the importance of microbial competition between harmful
and beneficial bacteria and the diversity of the skin surface on our health. We develop mathematical
models (M1 and M2 models) for the inflammation process using ordinary differential equations
and delay differential equations. In this paper, we study microbial community dynamics via
transcription factors, protease and extracellular cytokines. We investigate possible mechanisms
to induce community composition shift and analyze the vigorous competition dynamics between
harmful and beneficial bacteria through immune activities. We found that the activation of proteases
from the transcription factor within a cell plays a significant role in the regulation of bacterial
persistence in the M1 model. The competition model (M2) predicts that different cytokine clearance
levels may lead to a harmful bacteria persisting system, a bad bacteria-free state and the co-existence
of harmful and good bacterial populations in Type I dynamics, while a bi-stable system without
co-existence is illustrated in the Type II dynamics. This illustrates a possible phenotypic switch
among harmful and good bacterial populations in a microenvironment. We also found that large
time delays in the activation of immune responses on the dynamics of those bacterial populations
lead to the onset of oscillations in harmful bacteria and immune activities. The mathematical model
suggests possible annihilation of time-delay-driven oscillations by therapeutic drugs.
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1. Introduction

The skin is the largest tissue, which is composed of several different layers. The epidermis
is located at the outmost part of the skin tissue, which acts as a first barrier for the invasion
of physical (water), chemical (proteins) and biological (virus and bacteria) agents. A population
of keratinocytes is the major cell type in the epidermis, which constitutes stratum basale,
stratum spinosum, stratum granulosum and stratum corneum. Keratinocytes release anti-microbial
peptides or pro-inflammatory cytokines to prevent bacterial or viral infection [1]. The second outmost
layer, the dermis, is situated between the epidermis and subcutaneous tissues, which are composed
of fibroblasts, macrophages and adipocytes [2]. The dermis contains extracellular matrix components,
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including collagen and elastin, as well as lymph, blood vessels and many skin-resident immune
cell types. The homeostasis of the skin tissue is maintained by appropriate elimination of invading
agents and tight regulation of cellular activities. On the other hand, the breakdown of the homeostasis
of the skin tissue induces numerous diseases, including cancer, complications after an injury and
inflammatory symptoms. Atopic dermatitis (AD) is one of the major skin inflammatory diseases,
which are characterized by the elevated level of serum IgE and chronic allergic immune responses [3].
Incidence of AD has been increasing in developed countries. Notably, recent genetic studies have
revealed that barrier dysfunction of the epidermis due to filaggrin mutation is a major triggering
factor of disease progression [4,5]. Filaggrin is synthesized in keratinocytes at the stratum granulosum,
which is degraded to become a major component of natural moisturizing factor (NMF). Lack of NMFs
is associated with water loss skin dryness, leading to the progression of AD and ichthyosis vulgaris [4].
Not only dry condition, but also excessive proteolytic activities of the epidermis are implicated as
causal factors of AD. Patients with Netherton syndrome who exhibit atopic dermatitis-like chronic
inflammation indicate a genetic defect causing excessive serine proteases [6].

The inference of bacteria as an environmental factor has been implicated as a possible factor for
the progression of skin inflammatory diseases. Two major pathogenic bacteria species for skin diseases
are Staphylococcus aureus (S. aureus) and Streptococcus pyogenes (S. pyogenes). Importantly, S. aureus is a
major virulent species, which is implicated to be associated with the progression of atopic dermatitis [7].
S. aureus also induces impetigo and another serious symptoms. Methicillin-resistant S. aureus (MRSA)
is an antibiotic-resistant strain of S. aureus, the incidence of which is often reported as a nosocomial
infection [8]. On the other hand, some commensal bacteria can exhibit mutualistic behaviors through
the suppression of potentially pathogenic bacterial species via direct and indirect interactions, known as
probiotic effects. For instance, Staphylococcus epidermititis(S. epidermititis), a major commensal bacterial
species in the skin, can support the host defense by releasing antimicrobial peptides [9,10]. The other
beneficial microbial species include species belonging to the Lactobacillus genus. Lactobacillus reuteri
helps keratinocyte survival from S. aureus-induced cell death by outcompeting S. aureus [11].

The immune system plays a major role in preventing the invasion of numerous agents, including
bacteria, fungi, virus and foreign proteins [12]. Not only foreign antigens, but also antigens presented
by commensal bacteria can be an antigenic stimulation for the host immune system [13]. In fact,
the number of bacteria in abundance is controlled by the host immune system under normal
conditions [14]. The pathogenicity of S. aureus can be conferred by numerous immune evasion
strategies. In fact, several virulent factors of S. aureus have been reported in [15–17]. On the contrary,
several beneficial roles of S. epidermititis have been reported, although S. epidermititis can be virulent as
a nosocomial pathogen for immunocompromised patients [18]. S. epidermititis triggers innate immune
responses via toll-like receptor (TLR)-2, which mediate the killing of pathogenic bacteria, such as
S. aureus [19]. Lactobacillus plantarum can utilize the host innate immune system mediated by epithelial
cells by modulating the IL-17, IL-23 and TLR-2/4 expressions [20].

Regardless of the fact that many causal and preventive factors for the progression of AD and
other skin inflammatory diseases have been identified, each experimental and clinical research only
focuses on a specific aspect of the skin biology. The integration of knowledge in each sub-domain is
needed in order to achieve a comprehensive understanding of the progression of AD. As described
above, the detection of the manifestation of atopic dermatitis requires the integration of weakened
barrier function due to a genetic defect or excessive proteolytic activity, the inflammatory response
triggered by some of commensal bacteria and abnormal recruitment of immune cells via irregular
cellular communication with respect to cytokine signaling. Mathematical modeling and simulation
study enable integration and provide some basic insights into the maintenance mechanism underlying
the skin homeostasis and disease development as a defect of the homeostatic condition.

We focus on competitive bacterial interactions among S. epidermatitis as good bacteria and
S. aureus as bad bacteria that occur at the skin tissue to specifically reflect experimental and empirical
observations, such as [19]. Although our primary focus is to investigate the effects of bacterial
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competition on the dynamics of inflammatory responses in the epidermis, the mathematical models
presented here can be useful as a general scheme to describe the interactions among bacterial species
as an environmental factor with host immune responses on the surface of the body, such as the
epidermis and gastro-intestinal (GI) tract. See [21,22] for the diverse roles of proteases in the GI tract in
the maintenance of intestinal homeostasis. Hence, we focus on constructing mathematical models to
represent a less detailed, but the general manner of interactions among inflammation-related molecules,
such as protease, transcription factors and extracellular cytokines with bacterial species in epidermis.

In the present paper, we investigate how chronic inflammation can occur at the skin tissue.
Simple mathematical models are employed to describe the invasion of bacteria, the proteolytic
activity of keratinocytes, the activation of innate immune response and the release of antimicrobial
peptide and cytokines. The organization of the present paper is as follows. In Section 2, two
mathematical models (M1 and M2) are formulated. The M1 model is formulated to model the
dynamics of inflammation in response to bacterial infection via a transcription factor and extracellular
cytokines, as well as active proteases. Time delays may play a central role in the regulation of the
bacterial-immune system in this study due to possible delays in the regulation of the intracellular
transcription factors, protease induction and secretion of extracellular cytokines from bi-directional
communication between a cell in the tissue and the microenvironment. Artificial manipulation
(inhibition or enhancement of molecular players) of signaling pathways by therapeutic drugs typically
induces time delays [23,24] in generating the final production of immune responses, i.e., extracellular
cytokines, such as IL-4, IL-12, TNF-α and IFN-γ [25,26]. To explicitly describe the competition between
harmful and good bacteria, a formulation via an ordinary differential equation (ODE) and a delay
differential equation (DDE) is employed in the M2 model. Mathematical analyses on these models,
including the existence and stability of equilibria, are discussed in Section 3. In Section 3.1, numerical
simulations are performed to investigate how prominently the chronic inflammatory state is established
and maintained. Moreover, we investigate how bacterial competition can lead to a high chronic
inflammation state as an imbalanced state (dysbiosis). In Section 3.2, we analyze the competition
dynamics of harmful and good bacteria in the absence and presence of time delays and immune
boosting drugs. We also perform several in silico experiments, which include the investigation
of: (i) the effect of the clearance speed of cytokines on generating three regimes (harmful bacteria
persistence, good bacteria persistence and co-existence) in Type I dynamics and a bi-stability system
as a possible phenotypic switch in Type II dynamics; (ii) the effect of time delays on generating the
oscillatory behaviors of bacterial populations; (iii) the impact of different drug injection regimes on
the bacterial populations. In Section 4, we provide a discussion on the fundamental mechanism of
the bacterial attacks and immune response, as well as the survival schemes of harmful bacteria in
competition with good bacteria and future work in detail. Nondimensionalization and sensitivity
analysis of the model are given in the Appendix.

2. Materials and Methods

In this paper, we present two kinds of mathematical models, the M1 basic model in Section 2.1
and the M2 competition model in Section 2.2.

2.1. M1 Model

In this section, we develop a mathematical model based on the schematic diagram in Figure 1.
As indicated in Section 1, the key main players of the bacterial infection network in absence of
competition with other bacteria are the following variables:
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B = density of harmful bacteria,

P = concentration of protease,

AI = concentration of the intracellular transcription factor,

AE = concentration of extracellular cytokines,

Figure 1A illustrates the dynamical regulation of immune activities in response to bacterial
infection. Bacteria grow in the system with a carrying capacity and induce the secretion of proteases
for enhanced bacterial invasion. These proteolytic activities are suppressed by protease inhibitors
under normal conditions, but the perturbed balances between a protease and its inhibitors induce
the activation of transcriptional factors, causing skin troubles, such as atopy. The upregulated
transcriptional factors induce immune activities (extracellular cytokines), which in turn try to
kill bacteria. In order to incorporate the biological interactions shown in Figure 1A into our model of
bacteria-immune dynamics, we began by simplifying this network. Figure 1B shows a representation of
Figure 1A. The kinetic interpretation of the arrows and hammerheads in the given network represents
induction (arrow) and inhibition (hammerhead). We merged all complex networks between proteases
and their inhibitors into one component (blue dotted box in Figure 1A), while we kept the components
of bacteria, transcriptional factor and external allergic immune responses (cytokines) in one module
(red dotted boxes in Figure 1A), respectively. The scheme includes bacterial growth, the secretion
of proteases from bacterial invasion and stimulated transcriptional factors, the activation of the
intracellular transcription factor from upregulated proteases and secreted cytokines, the activation of
extracellular cytokines from the transcription factor, protein degradation of those key molecules and
eradication of those bacteria by cytokines.
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Figure 1. A schematic of the M1 model. (A) A schematic of immune responses to bacterial infection;
(B) the final network model that abstracts the key structure of the interaction network in (A). By merging
a multi-species compartment (blue dashed box in (A) including proteases and their inhibitors) into a
compartment (‘P’ in (B)), we get a simpler model in (B). Densities of bacteria, proteases, intracellular
transcription factor and extracellular cytokines are represented by ‘B’, ‘P’, ‘AI ’ and ‘AE’, respectively.
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Activation of transcription factors that are associated with immune responses, such as a member
of the interferon regulatory factor (IRF) family, is often mediated by positive feedbacks among these
transcription factors [27]. It is also known that activation of protease is mediated by molecular
interactions among the members of the kallikrein family [28]. Production of the cytokines is also
facilitated by a positive feedback, which is often referred to as a cytokine storm [29]. These activations
with positive feedbacks can be modeled by Hill functions.

In this work, we consider the following specific type of functional response known as the
Hill function:

σ◦(X) :=
m◦Xn

an◦ + (s◦X)n , (1)

where ◦ ∈ {IP, BP, PI, BI, EI, IE}. Assume that the activation of protease is mediated by transcription
factor AI and bacteria B. Based on these observations, we write the phenomenological equations for
the rate change of those key players (B, P, AI , AE) as follows:

dB
dt

=λ + rBB
(

1− B
K

)
− γAEB,

dP
dt

=σIP(AI) + σBP(B)− δPP,

dAI
dt

=σPI(P) + σBI(B) + σEI(AE)− δI AI ,

dAE
dt

=σIE(AI)− δE AE.

(2)

where λ is the source of bacterial populations in the tissue from the air, rB is the growth rate of bacteria,
K is the carrying capacity of the bacterial population, γ is the killing rate of bacteria by immune
cytokines and, finally, δP, δI , δE are the decay/clearance rates of proteases, transcriptional factors
and cytokines, respectively.

A list of parameters is summarized in Table 1.

Table 1. Dimensionless parameter values in the M1 model. TF = transcription factor.

Parameter Description Value

mIP Maximum activation rate of proteases by TFs 8–100
aIP Half saturation constant of proteases by TFs 3.0
sIP Inhibitory strength of proteases activation by TFs 1
n Hill cooperativity coefficient 2

mBP Maximum activation rate of proteases by bacteria 8
aBP Half saturation constant of proteases by bacteria 3.0
sBP Inhibitory strength of proteases activation by bacteria 1

mPI Maximum activation rate of TFs by proteases 8
aPI Half saturation constant of TFs by proteases 3.0
sPI Inhibitory strength of TF activation by proteases by 1

mBI Maximum activation rate of TFs by bacteria 8
aBI Half saturation constant of TFs by bacteria 3.0
sBI Inhibitory strength of TFs by bacteria 1

mEI Maximum activation rate of TFs by cytokines 8
aEI Half saturation constant of TFs by cytokines 3.0
sEI Inhibitory strength of TFs by cytokines 1

mIE Maximum activation rate of cytokines by TFs 8
aIE Half saturation constant of cytokines by TFs 3.0
sIE Inhibitory strength of cytokines by TFs 1



Appl. Sci. 2016, 6, 252 6 of 34

Table 1. Cont.

Parameter Description Value

δP Degradation rate of protease 3.0
δI Degradation rate of transcription factor 3.0
δE Degradation rate of extracellular cytokines 3.0

λ Migration rate of bacteria 0.1
rB Population growth rate of bacteria 0.1
K Carrying capacity of bacteria 10.0
γ Per capita elimination rate of bacteria 1.0

2.2. M2 Model

In this section, we consider two different bacterial strains. Figure 2A illustrates the dynamical
regulation of bacterial infection and immune responses. There exists competition between harmful
and good bacteria for bacterial growth. Bacterial infection induces upregulation of the transcriptional
factor within the cell for immune activity and the secretion of proteases for enhanced bacterial invasion.
Induced extracellular cytokines from the transcription factor then suppress both of those bacteria.
In order to incorporate the interaction network shown in Figure 2B into our model of bacterial
competition and inflammation, we began by simplifying this network. As indicated in Section 1,
five main players of the bacterial infection network are harmful bacteria, good bacteria, protease,
intracellular transcription factors and extracellular cytokines. Let the variables B1, B2, P, AI and AE
be the densities or concentrations of harmful bacteria, good bacteria, protease, transcription factor
and cytokines, respectively. Figure 2B shows a representation of Figure 2A. The kinetic interpretation
of the arrows and hammerheads in the given network represents induction (arrow) and inhibition
(hammerhead). The scheme includes bacterial growth of both harmful and good bacteria, mutual
inhibition between harmful bacteria and good bacteria, secretion of proteases from those bacterial
invasions, activation of the intracellular transcription factor from these bacterial infections, activation
of extracellular cytokines via the transcription factor, protein degradation of those key molecules and
eradication of those bacteria by cytokines.

It has been known that: (i) the half-life of proteases (P) is short, which indicates the large decay
rate of P and that protease reactions occur quickly; and (ii) typical chemical reactions among proteins
and genes at a fast time scale lead to the fast internal dynamics. This allows us to use quasi-steady
state approximation (QSSA) to simplify the complex models (or interaction networks in Figure 2B).
Based on the topological structure and uni-directional activation flows in the immune reaction module
(transcription factor activities (AI), proteolytic activities (P), cytotoxic levels (AE); gray box in Figure 2B)
and the corresponding QSSA, we merged all complex networks between transcriptional factors (AI),
proteases (P) and extracellular cytokines (AE) into one component (gray box in Figure 2B,C), while
we kept the harmful (B1) and bad (B2) bacterial components in one module (yellow dotted boxes in
Figure 2B), respectively. Based on these observations, we write the phenomenological equations for
the rate change of those key players (B1, B2, AE) as follows:

dB1

dt
= r1B1 (1− α11B1 − α12B2)− γAEB1, (3)

dB2

dt
= r2B2 (1− α21B1 − α22B2)− γAEB2, (4)

dAE
dt

= β1B1 + β2B2 − δAE. (5)

where r1 and r2 are the growth rate of harmful and good bacteria, respectively, αii (i = 1, 2) and αij
(i 6= j, i, j = 1, 2) represent intra-specific and inter-specific competition coefficients between harmful
and good bacteria, respectively, γ is the killing rate of those bacteria by the extracellular cytokines, β1

and β2 are the activation of immune responses (level of cytokines) from harmful and good bacteria,
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respectively, and δ is the clearance rate of the immune cytokines. In many cases, measured values
of these parameter values (r1, r2, αii, γ, β1, β2, δ) are not available due to technical reasons. In order
to determine appropriate ranges of parameter values for correct dynamical behavior reflecting a real
biological system and to investigate the sensitivity of the bacterial populations and immune responses
to these parameters, we have performed sensitivity analysis for a mathematical model (3)–(5) in
Appendix B. Some of the parameter values (α11, r2, γ, β1) are very sensitive, but others (α22) are not
sensitive to these changes. See the Appendix for more details.

For computational purposes, we nondimensionalize the variables and parameters of the M1
(Equation (2)) and M2 models (Equations (3)–(5)) in Appendix A.
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Figure 2. A schematic of the M2 model. (A) A schematic of the biological system for the competition
between harmful and good bacteria and immune responses. There exists mutual antagonism
between harmful and good bacteria. On the other hand, bacterial infection induces upregulation
of the transcriptional factor (blue diamond) within the cell for immune activity and secretion of
proteases (red quarter pie) for enhanced bacterial invasion. Induced extracellular cytokines (green)
from transcription factor (blue) then suppress both harmful (red star) and good (blue star) bacteria.
All arrows refer to the induction of gene expression or proteins. The hammerheads from and to
bacteria (B1, B2) refer to the inhibition or suppression of bacterial growth. (B) Topological networks
representing the biological observations in (A). Densities of harmful bacteria, good bacteria, proteases,
intracellular transcription factor and extracellular cytokines are represented by ‘B1’, ‘B2’, ‘P’, ‘AI ’ and
‘AE’, respectively. (C) The final network model that abstracts the key structure of the network in
(B). By merging a multi-species compartment (gray box in (B) including ‘AI ’, ‘P’ and ‘AE’) into a
compartment ‘AE’ (gray box in (C)), we get a simpler model in (C).

3. Results

In this section, we analyze the dynamics of two models (M1 and M2). In the next section, we first
investigate the dynamics of M1 model for bacterial infection and its implications on immune responses.
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3.1. Dynamics of the M1 Model

The M1 model deals with immune responses to bacterial infection via the regulation of
proteases (P), internal allergic immune responses (AI) and the external allergic immune response in
terms of cytokines (AE). We first classify the steady states of the M1 model (2) in the next section.

3.1.1. Classification of Steady States

There exist three types of equilibria for System (2). Let EB := (B̄, 0, 0, 0) denote a steady state
representing no protease and immune responses under bacterial persistence, where B̄ > K is a
positive root of B̄2 − KB̄− Kλ/r = 0. Let E∗ := (B∗, P∗, A∗I , A∗E) denote an inflammatory state that is
maintained by additional external stimuli from bacteria. The components of E∗ are determined by the
solution of the following system of equations:

λ + rBB∗
(

1− B∗

K

)
− γA∗EB∗ = 0,

σIP(A∗I ) + σBP(B∗)− δPP∗ = 0,

σBI(B∗) + σPI(P∗) + σEI(A∗E)− δI A∗I = 0,

σIE(A∗I )− δE A∗E = 0.

(6)

By substituting the first and third equations into the second equation of (6), we obtain the
following equation with respect to A∗I :

δI A∗I = σPI((σIP(A∗I ) + σBP(B∗))/δP) + σEI(σIE(A∗I )/δE) + σBI(B∗). (7)

It follows from the first and fourth equations of (6) that B∗ is explicitly written as a positive root
of the following quadratic equation with respect to B:

B2 − K
{

1− γ

rBδE
σIE(A∗I )

}
B− Kλ

rB
= 0. (8)

Note that B∗ > 0. A∗I must satisfy:

σIE(A∗I ) <
rBδE

γ
. (9)

Then, there exists a unique positive root of (8), denoted by B = B∗ > 0. Since σIE(AI) is
continuous and monotonically increasing with respect to AI , (9) is rewritten as:

A∗I < σ−1
IE

(
rBδE

γ

)
. (10)

Then, (7) is rewritten as:

δI A∗I =σPI((σIP(A∗I ) + σBP(K− γKσIE(A∗I )/rBδE))/δP)

+ σEI(σIE(A∗I )/δE) + σBI(K− γKσIE(A∗I )/rBδE).
(11)

The existence of positive equilibrium E∗ is determined by the root of (11) with Constraint (10).
Let E∗L, E∗U and E∗H denote three equilibria of (2) ordered by the value of AIs: A∗I,L < A∗I,U < A∗I,H .

From the biological point of view, A∗I,· represents the strength of inflammation triggered by bacterial
antigenic stimuli.

Figure 3 indicates that there are two possible cases: the existence of a unique equilibrium for
weak activation of proteases (mIP = 8; Figure 3A) or multiple equilibria for enhanced activation of
proteolytic activation (mIP = 50; Figure 3B). Here, mIP is the activation rate of proteases from the
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transcription factor in the cell. In the upper panels of Figure 3, the straight solid line (blue) and the
dotted curve (green) show the left- and right-hand sides of (11) as a function of (A∗I ), respectively. The
intersection of those two curves represents the equilibria (E∗L, E∗U and E∗H). Stability analysis indicates
that: (i) when mIP is small (mIP = 8.0, the upper panel of Figure 3A), E∗L (black filled circle) is stable;
(ii) when mIP is relatively large (mIP = 50.0, the upper panel of Figure 3B), two steady states (E∗L and
E∗U ; empty circles) are unstable, but one steady state (E∗H ; black filled circle) is stable. Figure 3A shows
the emergence of the bacterial persistence phenotype in response to the weak activation of proteases
(mIP = 8.0). The unique positive stable equilibrium E∗L resides in the region (pink box) where the
transcription factor activities are suppressed and bacterial growth is active. On the other hand, when
protease activation is enhanced more than six-fold (mIP = 50), there exist three positive equilibria
(E∗L (unstable), E∗U (unstable) and E∗H (stable)) simultaneously (Figure 3B). The stable steady state
E∗H resides in the region (blue box in Figure 3B) where bacterial activities are inhibited by persistent
internal immune responses. These results predict the dynamical changes for various levels of protease
activation and illustrate the importance of protease activation in the regulation of bacterial growth
under the surveillance of the immune system in the tissue.
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Figure 3. Characterization of the protease activation and immune response in the M1 model. Circles in
the lower panels represent the steady state solutions of (11) for high and low values of a control
parameter mIP, the activation rate of proteases from the transcription factor in the cell. The intersection
(black circles) of the straight line (left-hand side of (11); blue solid line) and curve (right-hand side
of (11); green dotted curve) corresponds to the numerical value of A∗I in the upper panel. * Black
filled circle = stable, empty circle = unstable. (A) The bacterial persistence phenotype in response to
the weak activation of proteases (mIP = 8.0). There exists a unique positive stable equilibrium E∗L
in the region (pink box) where transcription factor activities are reduced and bacterial persistence is
observed. (B) Suppression of bacterial growth by immune activities in response to enhanced activation
of proteases (mIP = 50). There exist three positive equilibria E∗L, E∗U and E∗H simultaneously. While
two equilibria E∗L and E∗U are unstable, the equilibrium E∗H is stable. The equilibrium E∗H resides in the
region (blue box) where bacterial activities are reduced and high internal immune responses persist.
All other parameters are fixed as in Table 1.
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In the next section, we analyze the dynamics of the M1 model and discuss the implication of the
internal and external immune responses on the regulation of the harmful bacteria population.

3.1.2. Dynamics of the M1 Model System

When the M1 model system (2) is in equilibrium, we can solve bacteria density (B) as a function of
the activation rate of proteases from the transcription factor (mIP) for any set of parameters. Figure 4A
shows the graph B = B(mIP) as the S-shaped curves when other parameter values are fixed as in
Table 1. While a portion of the upper branch in the lower protease activation range is stable, the
remainder of the upper branch corresponding to the intermediate range of the protease activation
rate is unstable. On the other hand, the lower branch is stable, and the middle branch is unstable.
If mIP is small, then the system (2) is in the upper branch, B is high and the bacterial persistence
phenotype emerges. This situation continues to hold as mIP is increased until it reaches criticality. At
this point, the system jumps down to the low branch, with a suppressed level of bacterial activities,
and the bacterial growth is inhibited (while immune activities are increased). As mIP is decreased from
a high level of protease activation, the bacterial growth remains suppressed, until mIP is decreased
to the left knee point (red arrow; ∼42), at which time, the bacterial population jumps to the upper
branch, and the bacteria return to the growth phase. Figure 4B–D also shows the graphs AI = AI(mIP),
P = P(mIP) and AE = AE(mIP) as the hysteresis loops, as well. One notes that the bifurcation curves
for those variables in immune responses (intracellular transcription factors (AI), protease level (P)
and extracellular cytokines (AE)) show the flipped images of the B−mIP hysteresis loop in Figure 4A,
reflecting the bacteria-immune competition system. In other words, the immune activities (levels of
AI , P and AE) are suppressed compared to bacterial persistence in response to the weak protease
activation, while high levels of immune responses are shown compared to inhibited bacterial growth
in response to strong protease activation.

Based on the dynamics of the bacterial activities and cytokine levels observed above, we shall
define two adaptive types of the bacterial infection system (bacterial persist (TB) and immune boosting
(TI) systems) as follows:

TB = {(B, AE) ∈ R2 : B > thB, 0 ≤ AE < thAE},
TI = {(B, AE) ∈ R2 : 0 ≤ B < thB, AE > thAE}

(12)

where thB and thAE are the threshold values of bacterial activities and cytokine level, respectively.
With this definition (12), the unique stable equilibrium E∗L in Figure 3A belongs to the region TB in the
case of low mIP, while the stable steady state E∗H in Figure 3B resides in the region TI in the case of
high mIP.

In Figure 5, we show how the system adapts to the changes in the parameter mIP as predicted
in the analysis above (Figure 4). Figure 5A–C illustrates two distinct patterns of the steady state
(SS; red filled circles) of the dynamical system in response to a low (mIP = 30, Figure 5A), intermediate
(mIP= 50, Figure 5B) and high (mIP= 80, Figure 5C) activation rate of protease (mIP) in the B-AE phase
diagram. A low level of protease activation from the transcription factor (mIP = 30) induces low
cytokine levels and high bacterial infection (Figure 5A), while the intermediate or high activation level
(mIP = 50, 80) leads to significant immune response and suppressed bacterial activities (Figure 5B,C,
respectively) regardless of initial conditions. Figure 5D illustrates two distinct modes in the B-AE plane
as described in (12): (i) the bacterial persist region (TB) where bacterial growth is enhanced and
cytokine levels are suppressed; (ii) the immune boosting zone (TI where the extracellular cytokine
levels are increased and bacterial activities are inhibited. In Figure 5E–G, we show the time courses
of bacteria density (B; red) and the concentrations of protease (P, pink), transcription factor (AI ;
green) and cytokines (AE, blue) in response to three protease activation rates from the transcription
factor (mIP = 30, 50, 80) corresponding to Figure 5A–C, respectively, with the initial condition
B(0) = 1.7, P(0) = 0.1, AI(0) = 0.1, AE(0) = 0.1.
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In the next section, we investigate the dynamics of the competition M2 model.
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Figure 4. Bifurcation curves on the M1 model (2). (A) The B-mIP hysteresis loop: bacterial growth is
active when mIP varies in the upper stable branch and suppressed when mIP varies in the lower
stable branch. We define the bacterial persistence types by B > thB and the immune boosting
region by B < thB and take thB = 0.7. As mIP is increased from a low value (black arrow) in the
upper branch, the system loses stability at a Hopf bifurcation point (black arrowhead, marked with ‘H’).
(B–D) The corresponding hysteresis loops for intracellular transcription factors (AI), protease level (P)
and extracellular cytokines (AE). Other parameters are fixed as in Table 1. Black = stable, blue = unstable,
red dots = Hopf bifurcation point.
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Figure 5. Dynamics of the M1 model (2). (A–C) Dynamics of the M1 system in the B-AE phase plane to
a low (mIP = 30; (A)), intermediate (mIP = 50; (B)) and high (mIP = 80; (C)) activation rate (mIP) of
protease by the transcription factor. * Filled red circles in (A–C) = stable steady state (S.S.), empty black
circle in (B) = unstable S.S. (D) A schematic of two adaptive types of bacterial infection systems (bacteria
persist (TB) and immune boosting (TI) systems): TB = {(B, AE) ∈ R2 : B > thB, 0 ≤ AE < thAE},
TI = {(B, AE) ∈ R2 : 0 ≤ B < thB, AE > thAE}. All other parameters are fixed as in Table 1.
(E–G) Time courses of the main variables (B, P, AI , AE) for various activation rates (mIP = 30, 50, 80)
with the initial condition: B(0) = 1.7, P(0) = 0.1, AI(0) = 0.1, AE(0) = 0.1. All other parameters are
fixed as in Table 1.

3.2. Dynamics of Two Bacterial Strains Model (M2 Model)

We first investigate the existence of the equilibria of the M2 model (3)–(5).

3.2.1. Existence of Equilibria

By replacing the variable AE with I for notational purposes, the M2 model system is given by:

dB1

dt
= r1B1

(
1− B1

K1
− α12B2

)
− γB1 I,

dB2

dt
= r2B2

(
1− B2

K2
− α21B1

)
− γB2 I,

d
dt

I(t) = β1B1 + β2B2 − δI.

(13)
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where α11 = 1
K1

, α22 = 1
K2

. There are four types of equilibria of System (13). E0 = (0, 0, 0) is a trivial
equilibrium representing that neither bacteria nor the immune response exist. Let E1 = (B̄1, 0, Ī1) and
E2 = (0, B̄2, Ī2) denote dominant equilibria in which either B1 or B2 exists. The explicit values of each
component of E1 and E2 are given as follows, respectively.

E1 =

(
K1r1δ

δr1 + γβ1K1
, 0,

K1r1β1

δr1 + γβ1K1

)
,

E2 =

(
0,

K2r2δ

δr2 + γβ2K2
,

K2r2β2

δr2 + γβ2K2

)
.

(14)

Let E+ := (B∗1 , B2
2 , I∗) denote a positive equilibrium representing the coexistence of two bacterial

species under the pressure of the immune response. It follows from the third equation of (13) that I∗ is
given by:

I∗ =
β1

δ
B∗1 +

β2

δ
B∗2 . (15)

By substituting the explicit value of I∗ into the first and second equations of (13), we obtain the
following linear system of equations with respect to B∗1 and B∗2 :(

r1δ + γβ1K1 K1(r1α12δ + γβ2)

K2(r2α21δ + γβ1) r2δ + γβ2K2

)(
B1

B2

)
=

(
r1K1δ

r2K2δ

)
(16)

Hence, the explicit values of each component of E+ are given by:

B∗1 =
K1δ{r1r2(1− K2α12)δ + γβ2K2(r1 − r2)}

D0
,

B∗2 =
K2δ{r1r2(1− K1α21)δ + γβ1K1(r2 − r1)}

D0
,

I∗ =
r1r2δ{β1K1(1− α12K2) + β2K2(1− α21K1)}

D0
,

(17)

where D0 is given by:
D0 :=(r1δ + γβ1K1)(r2δ + γβ2K2)

−K1K2(r1α12δ + γβ2)(r2α21δ + γβ1).
(18)

For equilibrium E+ to be a positive equilibrium requires B∗1 > 0 and B∗2 > 0. Define matrix
A = {aij} and vector b = (b1, b2)

T (i, j = 1, 2), such that:

A

(
B1

B2

)
= b. (19)

Then, a11 = r1δ + γβ1K1, a12 = K1(r1α12δ + γβ2), a21 = K2(r2α21δ + γβ1), a22 = r2δ + γβ2K2,
b1 = r1K1δ and b2 = r2K2δ. An internal equilibrium exists if and only if:

b2

a22
<

b1

a12
and

b1

a11
<

b2

a21
(20)

or:
b2

a22
>

b1

a12
and

b1

a11
>

b2

a21
(21)

Note that (20) and (21) are equivalent to:

r1r2(K2α12 − 1)δ− γβ2K2(r1 − r2) < 0 and

r1r2(K1α21 − 1)δ− γβ1K1(r2 − r1) < 0
(22)
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and:
r1r2(K2α12 − 1)δ− γβ2K2(r1 − r2) > 0 and

r1r2(K1α21 − 1)δ− γβ1K1(r2 − r1) > 0,
(23)

respectively. Define D1, D2, w1 and w2 by:

D1 := K1α21 − 1, D2 := K2α12 − 1. (24)

w1 =
γβ1K1(r2 − r1)

r1r2D1
, w2 :=

γβ2K2(r1 − r2)

r1r2D2
. (25)

Finally, we consider the conditions for the existence of E+. It follows from (22) and (23) that
E+ ∈ R3

+ if and only if:

r1r2D1δ + γβ1K1(r1 − r2) < 0 and r1r2D2δ + γβ2K2(r2 − r1) < 0 (26)

or:
r1r2D1δ + γβ1K1(r1 − r2) > 0 and r1r2D2δ + γβ2K2(r2 − r1) > 0. (27)

Note that the stability conditions of E1 and E2 are given by (34) and (37), respectively (see
the next subsection for details). Conditions (34) and (37) are mutually exclusive with (26), but are
identical to (27). In other words, coexistent equilibrium E+ exists only if both E1 and E2 are unstable
or locally stable. In the later case, the system would be expected to exhibit bistability between
E1 and E2.

In summary, the existence conditions of internal equilibrium E+ are classified in Tables 2 and 3
according to the sign of r1 − r2 and w1 − w2.

Table 2. Existence condition of E+ when r1 > r2.

Case w1 < w2 w2 < w1

D1 > 0 & D2 > 0 w2 < δ nonexistence
D1 < 0 & D2 > 0 w1 < δ < w2 w2 < δ < w1
D1 > 0 & D2 < 0 nonexistence nonexistence
D1 < 0 & D2 < 0 nonexistence w1 < δ

Table 3. Existence condition of E+ when r1 < r2.

Case w1 < w2 w2 < w1

D1 > 0 & D2 > 0 nonexistence w1 < δ
D1 < 0 & D2 > 0 nonexistence nonexistence
D1 > 0 & D2 < 0 w1 < δ < w2 w2 < δ < w1
D1 < 0 & D2 < 0 w2 < δ nonexistence

In the next section, we check the stability of the equilibria of the M2 model (13).

3.2.2. Stability of Equilibria

Mathematical conditions for local stability of equilibria are derived based on the linearized
equations around any of the equilibria E◦ = (B◦1 , B◦2 , I◦). The Jacobian matrix for E◦ is given by:

J(E◦) =

 r1 −
2r1B◦1

K1
− r1α12B◦2 − γI◦ −r1α12B◦1 −γB◦1
−r2α21B◦2 r2 −

2B◦2 r2
K2
− r2α21B◦1 − γI◦ −γB◦2

β1 β2 −δ

 . (28)



Appl. Sci. 2016, 6, 252 15 of 34

The Jacobi matrix for E0 is given by:

J(E0) =

 r1 0 0
0 r2 0
β1 β2 −δ

 . (29)

Since r1 > 0 and r2 > 0, E0 is always unstable.
The Jacobi matrix for E1 is given by:

J(E1) =

 −
r1

2δ
r1δ+γβ1K1

− r1
2α12K1δ

r1δ+γβ1K1
− γK1r1δ

r1δ+γβ1K1

0 r1r2(1−α21K1)δ+γβ1K1(r2−r1)
r1δ+γβ1K1

0
β1 β2 −δ

 . (30)

Characteristic equation P1(λ) = 0 defined for J(E1) is given by:

P1(λ) =

{
λ− r1r2(1− α21K1)δ + γβ1K1(r2 − r1)

r1δ + γβ1K1

} ∣∣∣∣∣ λ + r1
2δ

r1δ+γβ1K1

γK1r1δ
r1δ+γβ1K1

−β1 λ + δ

∣∣∣∣∣ . (31)

Let A1(λ) be defined by:

A1 =

∣∣∣∣∣ − r1
2δ

r1δ+γβ1K1
− γK1r1δ

r1δ+γβ1K1

β1 −δ

∣∣∣∣∣ . (32)

Note that the trace and determinant of A1 satisfy tr(A1) < 0 and det(A1) > 0. Hence, E1 is locally
asymptotically stable if:

r1r2(1− α21K1)δ + γβ1K1(r2 − r1) < 0. (33)

Note that (33) is rewritten as:

r1r2D1δ + γβ1K1(r1 − r2) > 0. (34)

In other words, (34) is equivalent to one of the following two conditions:

(E1S1) r1 > r2 and D1 > 0,
(E1S2) r2 > r1, D1 > 0 and 0 < w1 < δ.

Stability conditions of E2 are derived from the Jacobi matrix for E2:

J(E2) =


r1r2(1−α12K2)δ+γβ2K2(r1−r2)

r2δ+γβ2K2
0 0

− r2
2α21K2δ

r2δ+γβ2K2
− r2

2δ
r2δ+γβ2K2

− γK2r2δ
r2δ+γβ2K2

β1 β2 −δ

 . (35)

In a similar way to E1, E2 is locally asymptotically stable if:

r1r2(1− α12K2)δ + γβ2K2(r1 − r2) < 0. (36)

Note that (36) is rewritten as:

r1r2D2δ + γβ2K2(r2 − r1) > 0. (37)

In other words, (37) is equivalent to one of the following two conditions:

(E2S1) r2 > r1 and D2 > 0,
(E2S2) r1 > r2, D2 > 0 and 0 < w2 < δ.
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We note that the system of differential equations for bacterial strains without any anti-microbial
killing and recruitment and with the same growth rates of bacteria (r1 = r2 = rB):

dB1

dt
=rBB1 (1− α11B1 − α12B2)

dB2

dt
=rBB2 (1− α21B1 − α22B2)

(38)

reduces to the classical two-dimensional Lotka–Volterra competition model. If we assume that the
magnitude of inter-specific competition is stronger than intra-specific competition, i.e.,

α11 < α21 and α22 < α12, (39)

then a unique positive equilibrium of (38) exists, and it is unstable. It can be shown that solutions
converge to either (1/α11, 0) or (0, 1/α22) depending on the choice of the initial state.

In the next section, we investigate the dynamics of the competition model (M2) and
immune system.

3.2.3. Dynamics of the Competition Model M2 in Response to the Immune System

We shall define three adaptive types of the competition system (harmful bacteria-persist (TB),
harmful bacteria-free (TF) and co-existence (Tc)) corresponding to regions in the B1-B2 plane, including
equilibria points (E1, E2, E+) discussed in the previous section:

TB := {(B1, B2) ∈ R2 : B1 > 0, B2 = 0}, (corresponding to E1)

TF = {(B1, B2) ∈ R2 : B1 = 0, B2 > 0}, (corresponding to E2)

Tc = {(B1, B2) ∈ R2 : B1 > 0, B2 > 0}, (corresponding to E+)

(40)

The basic parameter set for the M2 model is given in Table 4.

Table 4. Parameters used in the M2 model.

Parameter Description Type I Type II

Inter- and intra-competition

a11 Inter-specific competition coefficient 1/a11 = K1 = 0.5 K1 = 2.0
a22 Inter-specific competition coefficient 1/a22 = K2 = 2.0 K2 = 1.5
a12 Intra-specific competition coefficient 1.0 1.0
a21 Intra-specific competition coefficient 1.0 1.0

Activation/production rates

r1 Growth rate of harmful bacteria 1.5 1.5
r2 Growth rate of good bacteria 1.0 1.0
β1 activation of cytokines by harmful bacteria 0.1 1.0
β2 activation of cytokines by good bacteria 1.0 0.1

Inhibition/decay Rates

γ Per capita elimination rate of bacteria 1.0 1.0
δ Decay rate of cytokines 0.35 0.25

In Figure 6, we investigate the dynamics of the two-species model (3)–(5) in the presence of
the immune response for a base parameter set (Type I). r1 = 1.5, r2 = 1.0, K1 = 0.5, K2 = 2.0,
α12 = 1.0, α21 = 1.0, β1 = 0.1, β2 = 1.0, γ = 1.0. Analysis in Section 3.2.2 indicates that: (i) E2

is stable if δ > 0.66666, whereas E1 is stable if δ < 0.03333; and (ii) E+ is expected to be stable if
0.03333 < δ < 0.66666. Figure 6A–C shows the trajectories (B1(t), B2(t)) of harmful and good
bacteria populations for various decay rates of cytokines (δ = 0.033 (Figure 6A), 0.35 (Figure 6B) and
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0.7 (Figure 6C)) with four initial conditions: B1(0) = 0.07, B2(0) = 0.45 (yellow curve); B1(0) = 0.38,
B2(0) = 0.58 (green curve); B1(0) = 0.05, B2(0) = 0.1 (blue curve); B1(0) = 0.35, B2(0) = 0.02 (purple
curve). The initial condition of the immune response was set to be zero (AE(0) = 0) for all cases.
Figure 6E–F shows the trajectories of (B1(t), AE(t)) corresponding to Figure 6A–C, respectively. When
the decay rate of cytokines is small (δ = 0.033), the system converges to E1 equilibrium where good
bacteria are cleared out and harmful bacteria survive in a battle via the immune system (Figure 6A).
Initial strong immune responses (black arrow in Figure 6E) due to the weak clearance rate (δ � 1)
significantly eliminate both harmful and good bacterial populations (black arrowhead in Figure 6A).
While the good bacteria are totally eradicated by this strong immune response due to the relatively low
growth rate, the harmful bacteria survive due to the higher growth rate and winning the competition
battle with the good ones (blue arrow in Figure 6A). The system adapts a harmful bacteria-free
equilibrium when δ is large (δ = 0.7 in Figure 6C). The strong clearance of immune activities in the
system leads to relatively weak immune responses (black arrow in Figure 6G). This increases the
chances of winning the competition for good bacteria and decreases the harmful bacteria population,
pushing the system (B1(t), B2(t)) in the upper left corner (black arrowhead in Figure 6C). Then, the
system converges to the E2 equilibrium, the attractor (red filled circle in Figure 6C), where harmful
bacteria are eradicated by the immune system and the helpful bacteria persist. On the other hand, an
intermediate immune response (δ = 0.3 in Figure 6B) leads to the co-existence of good and harmful
bacteria populations. The immune system initially successfully attacks and decreases the number
of both harmful and good bacteria, but this also reduces the activation of the immune system (cf.
Equation (5)). The reduced immune activity also increases the chance of the regrowth of both bacterial
types (arrowhead in Figure 6B), leading to the coexistence of those two bacterial populations (red filled
circle in Figure 6B), corresponding to E+ equilibrium. In response to small (δ = 0.0033), intermediate
(δ = 0.35) and large (δ = 0.7) decay rates of cytokines, the system transits from harmful bacteria-persist
region (TB) to the co-existence zone (Tc) and then to the harmful bacteria-free (TF) region (yellow
curved arrow). Dysbiosis, or bacterial imbalance, represents a state of reduced species diversity with
the emergence of a few extraordinary highly abundant species. Dysbiosis is broadly observed for
several microbial ecologies, including in aquatic systems or intestinal systems. It has been shown
to be associated with illnesses, such as cancer [30,31], bacterial vaginosis [32], inflammatory bowel
disease [33,34], chronic fatigue syndrome [35], obesity [36,37] and colitis [38]. Dysbiosis in the gut is
known to be associated with major chronic inflammation states [39]. Dysbiosis caused by the imbalance
of the skin commensal bacterial species composition has been reported [40,41]. Importantly, dysbiosis
characterized by the increase of S. aureus has been shown to be associated with atopic dermatitis, one
of the major skin inflammatory diseases [7]. It is suggested that dysbiosis and Staphylococcus aureus
colonization drive inflammation in atopic dermatitis [7]. In our model, different immune reactions
from the weak, intermediate and strong clearance strength (δ) of extracellular cytokines, such as IL-4,
IL-12 and IFN-γ, result in the imbalance between harmful and good bacteria, co-existence or healthy
tissue homeostasis (Figure 6D). In particular, increased levels of harmful bacteria and reduced levels of
the beneficial bacteria, i.e., dysbiosis, may be induced when the clearance of the immune reactions is
weak (δ = 0.033; Figure 6A). The tipping point of the balance between beneficial and harmful bacteria
is the vigorous and subtle competition between those different kinds of bacteria.

Figure 7A shows the steady state of harmful bacteria (B∗1 ) at three equilibria (E1 red; E2 blue; E+

black) as a function of δ. Solid and dotted curves illustrate the stable and unstable branches at E1, E2, E+

for the continuous spectrum of δ. Small, intermediate and large values of δ lead to harmful bacteria
persisting, co-existence and good bacteria persisting regimes, respectively, as shown in Figure 6A–C.
Figure 7B illustrates how the system transits from TB to Tc and then to TF in response to an increase in
δ by following the stable branches of B∗1 at E1, E+ and E2, respectively, in Figure 7A. This illustrates
how phase transitions (TB → Tc → TF) in Figure 6D can be induced by the continuous increase in the
clearance rate of the immune system.
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Figure 6. Co-existence and dynamics of harmful and good bacteria in response to various cytokine
clearance levels (δ) in the competition M2 model (3)–(5). (A–C) Trajectories (B1(t), B2(t)) of
bacterial populations for various decay rates of cytokines (δ = 0.033 (A), 0.35 (B), 0.7 (C)) with four
initial conditions; (D) characterization of the dynamical system in the B1-B2 plane. There exist three
phenotypic regions: harmful bacteria-persist (TB, lower pink box near x-axis), harmful bacteria-free
(TF, left blue box near y-axis) and co-existence (Tc, gray box in the center) regions. As δ is increased
(δ = 0.0033 → 0.35 → 0.7), the system undergoes the transition from TB to Tc and then to TF.
(E–G) Trajectories of (B1(t), AE(t)) corresponding to (A–C), respectively. All other parameters are fixed
as in Table 4 (Type I).

In Figure 8, we investigate the dynamics of the bi-stable competition system with the parameter
set (Type II): r1 = 1.5, r2 = 1.0, K1 = 2.0, K2 = 1.5, α12 = 1.0, α21 = 1.0, β1 = 1.0, β2 = 0.1, γ = 1.0.
Analysis in Section 3.2.2 indicates that E1 is stable if δ > 0.1, whereas E2 is stable if δ > 0. In
comparison to the previous case in Figure 6, the system does not present the co-existence region
(Tc). Figure 8A shows the regions of harmful bacteria-persist (TB) and bacteria-free (TF) in the
B1 − B2 phase-plane. While initial states (B1, B2) in the region RB (red) converge to the harmful
bacteria-persist equilibrium (TB, red circle), the initial states in the upper-left region (RF; blue) converge
to the harmful bacteria-free equilibrium (TF; red circle). For example, curves indicate the trajectories
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(B1(t), B2(t)) for two very close initial conditions: B1(0) = 0.15, B2(0) = 0.713 (blue curve) and
B1(0) = 0.15, B2(0) = 0.71 (red curve) near the boundary (green dotted curve) between RB and RF.
The initial condition of cytokines was set to be zero (AE(0) = 0). E1 = (0.9375, 0), E2 = (0, 0.3158).
Figure 8B,C shows the trajectories in the B1 − AE plane (Figure 8B) and time courses (Figure 8C) of
bacterial populations (B1, B2) and cytokine level (AE) for two very close initial conditions in Figure 8A:
B1(0) = 0.15, B2(0) = 0.713 (dotted curves) and B1(0) = 0.15, B2(0) = 0.71 (solid curves). Figure 8D
shows the bi-stable nature of the dynamical system where one kind of the harmful or beneficial bacteria
dies out and the other kind survives depending on the initial state B1(0), B2(0). Therefore, the initial
status of exposure to both harmful and beneficial bacteria determines the dysbiosis or healthy tissue.

In the next section, we investigate the effect of time delays in immune responses on the dynamics
of the system.
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Figure 7. (A) Steady state solutions of bad bacteria (B∗1 ) as a function of δ corresponding to E1

(red), E2 (blue) and E+ (black) equilibria, respectively. Solid curve = stable, dotted curve = unstable.
Green arrows indicate the points δ = 0.0033, 0.35, 0.7 corresponding to Figure 6A–C, respectively.
(B) Trajectories of B1(t) in a B1 − δ plane when δ is a monotonic increasing function of time, satisfying
dδ
dt = 0.00002 with the initial condition B1(0) = 0.12, B2(0) = 0.01, AE(0) = 0, δ(0) = 0.01 near the
stable equilibrium point E1 = E1(δ = 0.01). As δ is increased, the system sequentially follows the
stable branches in (A), leading to the transition from stable E1 branch (red solid curve in (A)) to stable
E+ branch (black solid curve in (A)) and then to stable E2 branch (blue solid curve in (A)). All other
parameters are fixed as in Table 4 (Type I).
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Figure 8. Bi-stability dynamics of harmful and beneficial bacteria in response to the immune system
in the two-species M2 model (3)–(5). (A) Dynamics of harmful bacteria-persist (TB) and bacteria-free
(TF) in the B1-B2 phase-plane. While initial states (B1, B2) in the region RB (red) converge to
the harmful bacteria-persist equilibrium (TB), the initial states in the upper-left region (RF; blue)
converge to the harmful bacteria-free equilibrium (TF). Blue and red curves indicate the trajectories
(B1(t), B2(t)) for two very close initial conditions: B1(0) = 0.15, B2(0) = 0.713 (blue curve) and
B1(0) = 0.15, B2(0) = 0.71 (red curve) near the asterisk on the boundary (green dotted curve) between
RB and RF. AE(0) = 0. * Filled red circle in (A,B) = stable S.S.: E1 = (0.9375, 0), E2 = (0, 0.3158).
(B,C) Trajectories (B1(t), AE(t)) and time courses (C) of bacterial populations (B1, B2) and cytokine
level (AE) for two very close initial conditions in (A): B1(0) = 0.15, B2(0) = 0.713 (dotted curves)
and B1(0) = 0.15, B2(0) = 0.71 (solid curves). (D) Characterization of the system: the dynamics
adapts to the bi-stability system where the dynamical system chooses either harmful or good bacteria
persisting tissue based on the initial exposure to those bacterial kinds. All other parameters are fixed as
in Table 4 (Type II).

3.2.4. Effect of Time Delays in Immune Response on the Competition System

In this section, we introduce time delays in the immune response for the reduced competition
system (3)–(5). The governing equations for the simple model with time delays (τ1, τ2) are given by:

d
dt

B1(t) = r1B1(t)(1− α11B1(t)− α12B2(t))− γAE(t)B1(t), (41)

d
dt

B2(t) = r2B2(t)(1− α21B1(t)− α22B2(t))− γAE(t)B2(t), (42)

d
dt

AE(t) = β1B1(t− τ1) + β2B2(t− τ2)− δAE(t), (43)

where τ1, τ2 are time delays in the immune response for harmful and beneficial bacteria
attacks, respectively.
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In Figure 9, we investigate the effect of small time delays (τ1 = τ2 = 1.5). In the absence of time
delays (τ1 = τ2 = 0), the population of bad bacteria (B1) converges to zero (Bs,2

1 = 0; blue solid line
in Figure 9A), while the population of good bacteria (B2) and the immune system (AE) converge to
positive equilibria Bs,2

2 (blue solid line in Figure 9B) and As,2
E (blue solid line in Figure 9C), respectively.

On the other hand, in the presence of time delays (τ1 = τ2 = 1.5), the population of good bacteria (B2)
converges to zero (Bs,1

2 = 0; red dashed line in Figure 9C), while the population of bad bacteria (B1) and
the immune system (AE) persists with positive equilibria Bs,1

1 (red dashed line in Figure 9B) and As,1
E (red

dashed line in Figure 9C), respectively. Therefore, an introduction of weak time delays in the system
induces a switch from the B2-dominant equilibrium (0, Bs,2

2 , As,2
E ) to the B1-dominant equilibrium

(Bs,1
1 , 0, As,1

E ). See Figure 9D,E. The initial condition was B1(0) = 0.15, B2(0) = 0.72, AE(0) = 0.0.
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Figure 9. Effect of small time delays (τ1 = τ2 = 1.5) in the competition M2 model (41)–(43). (A–C) Time
courses of the populations of bad bacteria (B1 in (A)) and good bacteria (B2 in (B)) and immune response
(AE in (C)) in the absence (blue solid lines) and presence (red dashed lines) of time delays; (D) the
corresponding trajectories of B1 and B2 in (A,B) in the phase plane; (E) the corresponding trajectories
of B1 and AE in (B,C) in the phase plane. The introduction of weak time delays in the system induces a
switch from the B2-dominant equilibrium (0, Bs,2

2 , As,2
E ) to the B1-dominant equilibrium (Bs,1

1 , 0, As,1
E ).

Initial condition: B1(0) = 0.15, B2(0) = 0.72, AE(0) = 0.0. All other parameters are fixed as in Table 4
(Type II).

However, for larger time delays, the DDE system completely changes the dynamics. The system
induces oscillations in both the population of bad bacteria (B1; Figure 10A) and the levels of immune
cytokines (AE; Figure 10C) in the presence of larger time delays (τ1 = τ2 = 3.5). The system maintains
the extinction of the good bacterial population under this condition (Figure 10B) as in the small time
delays in Figure 9. The dynamics of the ODE case is shown in the blue solid curves in Figure 10 and is
the same as in Figure 9. This oscillatory behavior of the in vivo pathogens and specific/non-specific
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immunity was observed in experiments [42,43], and the time delay may have existed in the specific
bacterial kinds.
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Figure 10. Effect of large time delays (τ1 = τ2 = 3.5) in the competition M2 model (41)–(43). The
introduction of time delays in the system induces oscillatory behaviors of both bad bacteria (B1) and
immune cytokines (AE) and the extinction of good bacteria. (A–C) Time courses of the populations
of bad bacteria (B1 in (A)) and good bacteria (B2 in (B)) and the immune response (AE in (C)) in
the absence (blue solid lines) and presence (red dashed lines) of time delays; (D) the corresponding
trajectories of B1 and B2 in (A,B) in the phase plane; (E) the corresponding trajectories of B1 and AE

in (B,C) in the phase plane; Initial condition: B1(0) = 0.15, B2(0) = 0.72, AE(0) = 0.0. All other
parameters are fixed as in Table 4 (Type II).

Our investigation illustrates that the system undergoes dynamical changes as the time delays
(τ = τ1 + τ2) are increased. In the absence (τ = 0) or small values of time delays, the bi-stable system
induces either the imbalance state (Bs,1

1 , 0, As,1
E ) or disease-free state (0, Bs,2

2 , As,2
E ). As the time delays

are further increased, the system induces the oscillatory behaviors of harmful bacteria and immune
activities for some initial conditions (B1, B2, 0). This indicates that the strength of time delays in either
the induction of extracellular cytokines or the manipulation of intracellular signaling pathways may be
enough to perturb the bistable pathogen-immune dynamics and leads to the recurrence of the harmful
bacteria population.

In the next section, we investigate the local stability of the reduced system of DDEs (41)–(43) and
present the onset of Hopf bifurcation.
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3.2.5. Local Stability Analysis of Delay Differential Equations

For simplicity, we consider the simplified version of the model for analysis by ignoring the good
bacterial dynamics: 

d
dt

B1(t) = rB1(t)(1− α11B1(t))− γAE(t)B1(t),

d
dt

AE(t) = βB1(t− τ)− δAE(t),
(44)

Assume that δ � 1. Quasi steady state approximation is applied to (44) to obtain
two-dimensional system:

d
dt

B1(t) = rB1(t)(1− α11B1(t)− β11B1(t− τ)) (45)

where β11 is explicitly given by:

β11 =
γβ

rδ
. (46)

The linearized system of (45), which is defined for E1 = (B̄1, 0), is given by:{
d
dt

x(t) = −rB̄1(α11x(t) + β11x(t− τ)) (47)

Characteristic equation P(z) = 0 defined for (47) is explicitly given by:

P(z) = z + rB̄1α11 + rB̄1β11e−zτ = 0. (48)

Let us investigate whether P(z) = 0 has a pair of pure imaginary roots z = ±iω, where without
loss of generality, we can assume that ω > 0. Then, the real and imaginary parts of P(+iω) = 0 are
given by:

rB̄1α11 + rB̄1β11 cos ωτ = 0,

rB̄1β11 sin ωτ = ω
(49)

By adding the square of real and imaginary parts, we obtain that:

ω2 = (rB̄1)
2(β2

11 − α2
11). (50)

The equality in (50) holds if and only if β11 > α11. It follows from the first equation of (49) that:

τ =
1
ω

cos−1
(
− α11

β11

)
. (51)

By numerical computations, critical time delay τ∗ at which a system undergoes Hopf bifurcation is
determined for the parameter set in Figure 11. More precisely, τ∗ ' 1.418. Figure 11 illustrates the
dynamic changes of stability at a steady state in Equation (45) as the time delay (τ) passes through the
critical Hopf bifurcation point τ∗ ' 1.418. The stable state of the equilibrium for smaller τ’s (τ = 0.0
(Figure 11A), 1.0 (Figure 11B) and 1.417 (Figure 11C)) becomes the unstable state around τ∗ (τ = 1.4181
in Figure 11C).

3.2.6. Therapeutic Approaches

Results in the previous section indicate that harmful bacteria may not be completely removed by
typical immune responses due to recurrence in the presence of time delays, and one has to introduce
a drug that enhances the immune system for the eradication of harmful bacteria. We introduce a
drug (D) under the following assumptions: (i) drugs enhance the immune activities of extracellular
cytokines by inhibiting signaling networks involving the intracellular transcription factors and protease
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activation; (ii) the drug is administrated with either a constant rate or periodic injection of drug; (iii)
drug compounds have a natural decay. The governing equations then are given by:

d
dt

B1(t) = r1B1(t)(1− α11B1(t)− α12B2(t))− γAE(t)B1(t), (52)

d
dt

B2(t) = r2B2(t)(1− α21B1(t)− α22B2(t))− γAE(t)B2(t), (53)

d
dt

AE(t) = D(t) + β1B1(t− τ1) + β2B2(t− τ2)− δAE(t), (54)

d
dt

D(t) = λD − δDD(t). (55)

where τ1, τ2 are time delays in the immune response for harmful and beneficial bacteria, respectively,
as in the previous section, λD is the injection rate of drugs and δD is the decay rate of the drug.
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Figure 11. Characterization of the simpler delay differential equation (DDE) immune system (45).
(A–D) Time courses of harmful bacteria population (B1) in the absence (τ = 0.0 in (A)) and presence of
different time delays (τ = 1.0 in (B); τ = 1.417 in (C), and τ = 1.4181 in (D)). The stable equilibrium
becomes unstable as τ passes through the Hopf bifurcation point τ∗ ' 1.418.

In Figure 12, we investigate the effect of constant drug injection on the dynamics of the DDE
system (52)–(55) in the presence of large time delays (τ1 = τ2 = 3.5). Figure 12A–C shows populations
of harmful (B1, red curve) and beneficial (B2, blue curve) bacteria in the upper panels and the levels
of cytokines (AE, solid black curve) and drugs (D, dotted green curve) in the lower panels for low
(λD = 0.01), intermediate (λD = 0.03) and large (λD = 0.1) injection rates, respectively. A small
injection (λD = 0.01) of drugs is not so effective to remove the harmful bacteria and still maintain
the oscillatory patterns of both harmful bacteria (B1) and immune cytokines (AE). This still leads
to the extinction of beneficial bacteria (B2(t) → 0 as t → ∞). See Figure 12A. For an intermediate
level of injection (λD = 0.03; Figure 12B), drugs annihilate the oscillations of the harmful bacteria
population and immune responses, leading to the infection-persist state (Bs

2 = 0, Bs
1 > 0). On the other

hand, a large amount of drug injection (λD = 0.1; Figure 12C) significantly enhances the immune
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activity and eliminates both harmful and beneficial pathogens (Bs
1 = 0, Bs

2 = 0). Figure 12D–E
shows the trajectories in the B1-B2 (Figure 12D) and B1-AE (Figures 12E) planes, respectively, for the
corresponding λD’s (λD = 0.01 (red), 0.03 (blue) and 0.1 (black)).
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Figure 12. Dynamics of system in response to constant drug injection in the presence of time delays
(τ1 = τ2 = 3.5) on immune response in the two-species model (52)–(55). (A) Small amount of
drug injection (λD = 0.01) still results in the oscillatory behaviors of both harmful bacteria (B1)
and immune cytokines (AE) and the extinction of good bacteria; (B) for an intermediate level of
injection (λD = 0.03), this oscillation disappears, and the system leads to the infection-persist state
(Bs

2 = 0, Bs
1 > 0); (C) large amount of injection (λD = 0.1) significantly enhances the immune activity

and removes both good and bad pathogens (Bs
1 = 0, Bs

2 = 0); (D) trajectories of bad (B1) and good
(B2) bacteria for various drug injection rates (λD = 0.01, 0.03, 0.1); (E) trajectories of bad bacteria (B1)
and immune activity (AE) for various drug injection rates (λD = 0.01, 0.03, 0.1). Initial condition:
B1(0) = 0.2, B2(0) = 0.95, AE(0) = 0.0, D(0) = 0. All other parameters are fixed as in Table 4
(Type II).

In real intravenous injection, the drug is administrated in a periodic infusion; we investigate the
effect of drugs in a more realistic situation in the clinical setting. For this, we replace Equation (55)
with the following:

d
dt

D(t) =
ND

∑
i=1

λD I[ti ,ti+td ]
(t)− δDD(t). (56)

where λD is the injection rate, δD is the decay rate of drugs, ND is the number of drug injections and
I[ti ,ti+td ]

(·) is the characteristic equations that give one over the time interval [tj, ti + td] with duration
td and zero otherwise. Here, the injection period is fixed: τD = tj+1 − tj, ∀j = 1, . . . , ND.

In Figure 13, we investigate the dynamics of the system in response to the periodic injection
of the high and low doses of drugs that boost patients’ immunity. For a low dose of drugs
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(λD = 0.2, td = 1 h, ND = 10), the system still maintains the oscillatory behaviors of bad bacteria,
and the immune-boosting effect from drugs is not significant enough to eradicate the bad bacteria
(red curve (B1) in Figure 13A). See the relatively low immune responses during IV injection periods in
Figure 13D (blue curve (AE) for t < 240). However, the promoted immune activity in response to a
higher dose of drugs (λD = 1.0, td = 1 h, ND = 10) results in bacterial extinction (red curve (B1) in
Figure 13C) due to elevated levels of initial immune response (blue curve (AE) in Figure 13D).
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Figure 13. Dynamics of the system in response to low and high doses of drugs in the two-species
M2 model (52)–(56). Immune activity was enhanced by the injection of drugs in a periodic fashion with
an injection period 24 h (τD = 24 h). (A) Time courses of populations of bad (B1) and good bacteria (B2)
in response to periodic injection of drugs with a lower infusion rate λD = 0.2 (duration td = 1 h fixed);
(B) time courses of immune response (AE) and drug levels (D) corresponding to (A); (C) time courses
of populations of bad (B1) and good bacteria (B2) in response to periodic injection of drugs with higher
infusion rate λD = 1.0 (duration td = 1 h); (D) time courses of immune response (AE) and drug
levels (D) corresponding to (C). Initial condition: B1(0) = 0.2, B2(0) = 0.95, AE(0) = 0.0, D(0) = 0.
Parameter values: ND = 10, δD = 0.1, τ1 = τ2 = 3.5; all other parameters are fixed as in Table 4
(Type II).

In Figure 14, we investigate the effect of therapeutic drugs on the regulation of the eradication or
recurrence of harmful bacteria in response to various combinations of infusion rates (λD) and injection
periods (τD). For a fixed value of injection period (τD), the system switches from the recurrence phase
to the eradication phase for harmful bacteria as the injection rate (λD) is increased. For a fixed λD,
the larger interval length between drug injections tends to increase the chance of the recurrence of
harmful bacteria. The model predicts that the larger infusion rate (λD) and shorter injection interval
would lead to the elimination of harmful bacteria.
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Figure 14. Therapeutic strategies of eradicating harmful bacteria by the injection of immune-boosting
drugs for various infusion rates (λD) and injection periods (τD) in a two-species M2 model (52)–(56).
Eradication (blue asterisk) and recurrence (red asterisk) of harmful bacteria in the λD-τD parameter
space (td = 1.0 fixed) at t = 300. Initial condition: B1(0) = 0.2, B2(0) = 0.95, AE(0) = 0.0, D(0) = 0.
Parameter values: ND = 60, δD = 0.1, τ1 = τ2 = 3.5; all other parameters are fixed as in Table 4
(Type II).

4. Conclusions and Discussion

This paper investigates the progression of skin inflammatory disease by mathematical modeling
and simulation. Three mathematical models were built to investigate how bacterial antigenic stimuli
initiate and maintain the inflammatory response of keratinocytes. First, the effect of positive feedback
regulation among protease and the transcription factor was incorporated, where we consider a
single bacterial species as the source of antigenic stimuli (model M1). The existence of multiple
positive equilibria indicated by equilibrium analysis implies that feedback switch occurs for model
M1. To investigate how high inflammatory response is maintained, parameter mIP representing the
activation rate of proteases from the transcription factor was varied. Model M1 exhibits qualitatively
different types of behaviors: one is the persistence of bacteria under a low inflammatory state;
another is a high inflammatory state. Numerical computations indicate that the transition from low
to high inflammatory states can occur when parameter mIP varies (Figures 3–5). From the biological
point of view, these computational results suggest that excessive protease activity can lead to a high
inflammatory response. A general scheme presented in this paper applies to at least two different types
of chronic inflammatory diseases. The first one is atopic dermatitis, which is often caused by primarily
defection of the barrier function at the epidermis via excessive protease activity. In the previous study,
the switch-like behavior was extensively investigated, which qualitatively explains the progression
of atopic dermatitis [44]. The second one is an inflammatory bowel disease, which is recognized as
a major inflammatory disease in the gut. Several research works imply the association of excessive
protease activity with the progression of chronic inflammation [21].

To investigate the effect of species competition among bacterial species, model M1 was extended
to include commensal or beneficial bacteria, which compete with a harmful bacterial species.
Mathematical model M2 was constructed to investigate the bacterial competition under immune
suppression. Model M2 consists of a classical Lotka–Volterra competition model with immune
suppression as a negative feedback effect on both species. Numerical simulations were implemented
extensively to understand the qualitative behavior of two bacteria under immune suppression
(Figures 6 and 8). The outcomes of competition among two species were classified by means of
the existence and stability conditions of equilibria (Section 3.2). The mathematical condition for
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the stability of the dominant equilibrium in which only a single bacteria species exists was derived.
Condition (E1S1) represents a situation in which harmful bacteria outcompete beneficial bacteria when
the growth rate of harmful bacteria is faster than that of beneficial bacteria (r2 > r1). Moreover, the
second condition D1 = α21K1 − 1 > 0 represents the transversal eigenvalue of equilibrium E1 in
the B2-direction. D1 > 0 implies that the direction of the transversal eigenvalue is negative. Hence,
beneficial bacteria cannot invade and grow when the harmful bacteria exist and have reached their
carrying capacity. Hence, the condition (E1S1) implies the non-invasibility of beneficial bacteria. On
the other hand, the condition (E1S2) represents an interesting situation. Despite the fact that harmful
bacteria have a slower growth rate than beneficial bacteria, this can prevent the invasion of beneficial
bacteria (D1 > 0) and, importantly, suppress the growth rates of both bacteria by utilizing the boosting
of immune suppression. In other words, harmful bacteria take advantage of growth inhibition by
immune suppression, which leads to the dominance of harmful bacteria. From the biological point
of view, there exists a possibility that some of the bacteria favor the inflammatory condition that
suppresses potential competitors. In [7], it is shown that S. aureus increases in abundance during
the process of dysbiosis, which can drive the inflammatory response, leading to atopic dermatitis
progression. Hence, the implication derived from the mathematical computation and analysis results
can partly explain how S. aureus grows in abundance while suppressing potential competitors.

Finally, time delays were introduced to represent the time required to activate an immune response.
In the skin tissue, this is generally mediated by innate immune cell types, such as neutrophils, which
have to be recruited from peripheral blood to an infection site. Hence, a time delay is inevitable
to consider the process of immune activation. By the introduction of a time delay, interestingly,
beneficial bacteria can outcompete harmful bacteria even though having a disadvantage in competition
(Figures 9–11). These numerical computation results indicate the possibility that the time delay
in immune cell recruitment can affect the outcome when two species are competitively bistable.
A case study on Francisella tularensis infection, which may causes hypercytokinemia, reported at least
a one-day delay in neutrophil recruitment post infection [45]. The introduction of a time delay in
the recruitment of activated innate immune cells to the infection site in the skin exhibits interesting
behaviors. Bacterial antigenic stimuli trigger the immune response via TLR4, antigen recognition
receptors, which specifically detect lipopolysaccharide (LPS) expressed on the surface of Gram-negative
bacteria. If we assume that good and bad bacteria are both Gram-negative bacteria, then it would be
reasonable to assume that the time required to activate immune responses in response to bacterial
stimuli would be the same. Hence, the same value was utilized for the two delays in this work. We
also investigated the effects of the immune-boosting drugs on the selection of harmful or beneficial
bacteria and developed strategies to prevent the cycles or recurrence of harmful bacteria populations
(Figures 12–14).

The results of this work can serve as a starting point for better comprehensive modeling and
experimentation. Some problems and extensions of the model that can be addressed in the future are
as follows.

• In the present model, we concentrated on two major pathogenic and commensal bacterial
species to obtain basic insight into how microbial interactions mediated chronic inflammation.
However, more than hundreds of bacterial species have been demonstrated to coexist in
the skin tissue. Metagenomic analysis targeting the gut- and skin-resident microbiome has
revealed that numerous uncultured species exist and potentially affect the maintenance of skin
homeostasis, as well as the progression of skin inflammatory disease [46]. The existence of spatial
compartmentalization by forming heterogeneous clusters of colonies across the epidermis and
dermis has been shown [47,48]. Although a few numbers of dominant species exist in terms
of population abundance, bacterial diversity in the skin is highly maintained [49]. Complex
interactions among commensal bacteria, the host immune system and different sources of
environmental fluctuations should be essential factors for the maintenance of species diversity.
Therefore, the incorporation of more than two bacterial species into the model would be more
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realistic. Colonization of harmful bacteria would be prevented by community-level resistance
by a bacterial community. The incorporation of multiple species interactions will provide new
insights on how the loss of bacterial diversity would lead to high inflammatory states.

• We considered the same time delays in the M2 model in this work. There exists the possibility of
an immune escape mechanism, which might justify the use of different time delays. For instance,
certain types of bacteria downregulate antigenicity when they invade tissue in order to escape
from immune surveillance [50]. This would lead to a time delay in the activation of the immune
system. Major extensions of the current model to include different time delays are warranted.

• The mathematical models presented here do not distinguish immune cell types, which are crucial
to determine the difference between the epidermis and the GI tract. For instance, Langerhans
cells are the major resident immune cell type that stays below the second layer of the stratum
granulosum (below the tight junction) and captures the antigen. After capturing the antigen,
Langerhans cells move to a draining lymph node to present the antigen to lymphocytes, known
as homing. In the intestine, invading bacteria that attach to the gut epithelial cells trigger
inflammatory responses, and finally, these bacteria are eliminated by immune cells recruited
from the Payer’s patch or gastric mucosal lymphoid follicles.

• Explicit incorporation of spatial structure is essential to represent specific and unique information
to the epidermis or the GI tract. In the present paper, however, we focused on the role of bacterial
species to induce inflammatory responses rather than spatial structure, which forms specific
and unique interactions among invading bacteria and immune cells. The ongoing project aims
to incorporate spatial structure and heterogeneity in immune cell subtypes, but it is currently
under investigation.

• The major signaling networks that control the intracellular regulation of transcriptional factor,
proteases and protease inhibitors need to be addressed.

• The microenvironment also plays an important role in the regulation of epidermis and stem cell
dynamics [51]. These include other immune cells, endothelial cells and stromal cells, such as
fibroblasts, as well as growth factors secreted by these cells.

• Cell-mechanical regulations, such as actin and serum response factor, were also shown to
transduce bio-physical cues from the microenvironment to control epidermal stem cell fate [52].

Our understanding of the complex biochemical interactions between the epidermal cells and
the microenvironment is very limited. Hybrid approaches may be used to take into account
these intracellular signaling pathways in addition to the mechanical interactions of cells with
microenvironment for detailed proteolytic activities, growth and invasion at the cellular level and
viscoelastic response of the whole tissue [23,53–57]. Yet a more comprehensive understanding of
the role of the microenvironment in epidermal homeostasis may lead to the development of new
therapeutic agents. We will discuss these in future work.
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Appendix A. Nondimensionalization

For the M1 model, we nondimensionalize the variables and parameters in the governing
Equation (2) as follows:
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t̄ =
t
T

, B̄ =
B
B∗

, P̄ =
P
P∗

, ĀI =
AI
A∗I

, ĀE =
AE
A∗E

, λ̄ =
Tλ

B∗
, r̄B = T rB, K̄ =

K
B∗

,

γ̄ = TγA∗E, δ̄P = TδP, δ̄I = TδI , δ̄E = TδE, m̄◦ =
Tm◦
Y∗

, ā◦ =
a◦
X∗

, s̄◦ = s◦.
(A1)

where ◦ ∈ {IP, BP, PI, BI, EI, IE} and Y ∈ {P, P, AI , AI , AI , AE} for X ∈ {AI , B, P, B, AE, AI}.
For the two-species M2 model, we nondimensionalize the variables and parameters in the

governing Equations (3)–(5) as follows:

t̄ =
t
T

, B̄1 =
B1

B∗1
, B̄2 =

B2

B∗2
, ĀE =

AE
A∗E

, r̄1 = T r1, r̄2 = T r2, ᾱ11 = α11B∗1 ,

ᾱ12 = α12B∗2 , ᾱ21 = α21B∗1 , ᾱ22 = α22B∗2 , γ̄ = TγA∗E, β̄1 =
Tβ1B∗1

A∗E
, (A2)

β̄2 =
Tβ2B∗2

A∗E
, δ̄ = Tδ.

Table A1 lists the reference values in the model.

Table A1. Reference value. tw = estimated in this work.

Var Description Dimensional Value Reference

T Time scale 3.5 h tw
B∗ Bacteria density (=B1, B2) 2.4 × 109 CFU/mL [58]
P∗ Protease concentration 50 mU/mL [59–62]
A∗I Transcriptional factor concentration 10 nM [63]
A∗E Cytokine concentration 2.0× 101 pg/cm3 [64,65]

Appendix B. Sensitivity Analysis

In the mathematical model developed in this paper, there are a few parameters for which no
experimental data are known due to abstract mathematical terms or that may affect significantly the
computational results and predictions. In order to determine the sensitivity of the bacterial populations
and the concentration of cytokines for these parameters, we have performed sensitivity analysis for
a mathematical model (3)–(5). We have chosen a range for each of these parameters and divided
each range into 10,000 intervals of uniform length. The base values and the ranges of the perturbed
parameters are as in Table B1. For each of the ten parameters, a partial rank correlation coefficient
(PRCC) value is calculated [66]. The calculated PRCC values range between −1 and 1 with the sign
indicating whether an increase in the parameter value will decrease (−) or increase (+) the bacterial
populations (B1 and B2) and cytokine concentration (AE) at a given time [66].

Figure B1 shows sensitivity analysis of all variables for ten key parameters
(r1, K1, α12, r2, α21, K2, γ, β1, β2, δ) in the mathematical model (3)–(5) at the selected time (t = 1, 40, 80).
For example, we show the sensitivity of bacterial populations in response to the changes of parameter
values in Figure B1. It is natural to predict the positive correlation of the bad bacterial population (B1)
with the growth rate (r1) and carrying capacity (K1 = 1/α11). Indeed, the bad bacterial population
is very sensitive to the changes in the growth rate and the carrying capacity, i.e., strong positive
correlations with r1 and K1. The initial strong correlations of the bad bacterial population with γ, β1 at
t = 1 turn into weak correlations at later times (t = 40, 80). On the other hand, the good bacterial
population is positively correlated with r2, but is negatively correlated with K1, γ. The initial strong
correlations of good bacterial population with α21, β1 at t = 1 turn into weak correlations at later
times (t = 40, 80). On the contrary, the weak initial correlation of populations of bad and good
bacteria with the decay rate of cytokines (δ) turns into a strong positive correlation. This indirectly
indicates the role of suppressed immune response in boosting the bacterial growth. In our model,
the immune response plays a key role in the regulation of bacterial dynamics. The strength of the



Appl. Sci. 2016, 6, 252 31 of 34

immune response is positively correlated with K1, β1, β2, but is negatively correlated with the decay
rate (δ). In particular, the immune response is strongly negatively correlated with the killing rate (γ)
of both bad and good bacteria at later times (t = 40, 80) due to decreased bacterial populations in
response to increased immune response. The parameters α12, β2, K2(= 1/α22) have little correlation
with all variables (B1, B2, AE). Table B1 summarizes the results of the sensitivity analysis in terms of
the populations of bad (B1) and good (B2) bacteria and cytokine concentration (AE), at t = 1, 40, 80.

Table B1. Sensitivity analysis for the local ODE system (3)–(5) at time t = 1, 40, 80. Parameters used
in sensitivity analysis and PRCC values of populations of bad bacteria (B1) and good bacteria (B2)
and the concentration of the immune system (AE) at various time points (t = 1, 40, 80) are shown
for 10 perturbed parameters r1, K1, α12, r2, α21, K2, γ, β1, β2, δ. A range (minimum/maximum) of
these ten perturbed (non-dimensional) parameters ([rmin

1 , rmax
1 ], [Kmin

1 , Kmax
1 ], [αmin

12 , αmax
12 ], [rmin

2 , rmax
2 ],

[αmin
21 , αmax

21 ], [Kmin
2 , Kmax

2 ], [γmin, γmax], [βmin
1 , βmax

1 ], [βmin
2 , βmax

2 ], [δmin, δmax]) and their baseline (rbase
1 ,

Kbase
1 , αbase

12 , rbase
2 , αbase

21 , Kbase
2 , γbase, βbase

1 , βbase
2 , δbase) are given in the lower section. Sample size =

10,000. * Significant (p-value < 0.01).

Par r1 K1 α12 r2 α21 K2 γ β1 β2 δPRCC

B1(1) −0.469 * 0.9802 * −0.206 * −0.048 * 0.0397 * −0.0018 −0.448 * −0.464 * −0.050 * 0.0694 *
B2(1) 0.1245 * −0.567 * 0.0294 * 0.6956 −0.693 * 0.0289 * −0.399 * −0.410 * −0.060 * 0.0541 *
AE(1) −0.237 * 0.8100 * −0.033 * 0.1185 * −0.114 * 0.0091 −0.093 * 0.9596 * 0.6476 * −0.393 *

B1(40) 0.4098 * 0.5636 * −0.295 * −0.500 * 0.1479 * −0.088 * −0.248 * −0.291 * 0.0100 0.3772 *
B2(40) −0.264 * −0.574 * 0.0706 * 0.6627 * −0.292 * 0.0687 * −0.512 * −0.384 * −0.308 * 0.6232 *
AE(40) 0.3034 * 0.3626 * −0.033 * 0.4340 * −0.082 * 0.0782 * −0.739 * 0.4905 * 0.3453 * −0.743 *

B1(80) 0.4035 * 0.5614 * −0.292 * −0.509 * 0.1360 * −0.085 * −0.232 * −0.284 * 0.0212 0.3412 *
B2(80) −0.204 * −0.478 * 0.0704 * 0.6061 * −0.241 * 0.0592 * −0.406 * −0.283 * −0.247 * 0.5178 *
AE(80) 0.3059 * 0.3551 * −0.031 * 0.4312 * −0.069 * 0.0715 * −0.728 * 0.4730 * 0.3195 * −0.730 *

Min 0.5 0.1 0.1 0.1 0.1 1.0 0.1 0.05 0.05 0.01
Base 1.5 0.5 1.0 1.0 1.0 2.0 1.0 0.1 1.0 0.35
Max 2.5 2.5 2.0 2.0 2.0 2.5 2.0 2.0 2.0 1.0
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Figure B1. Sensitivity analysis of a mathematical model, Equations (3)–(5). General Latin hypercube
sampling (LHS) scheme and partial rank correlation coefficient (PRCC) performed on the model.
The reference outputs are the densities of bad bacteria (B1) and good bacteria (B2) and the
concentration of inflammatory cytokines (AE) at time t = 1, 40, 80. The colors indicate PRCC
values of all variables (B1, B2, AE) in the simple model (Equations (3)–(5)) for ten model parameters
(r1, K1, α12, r2, α21, K2, γ, β1, β2, δ). Red color indicates positive correlations, and blue color indicates
negative correlations between the main variable and each parameter at the given time. The analysis
was carried out using the method of Marino et al. (2008) [66] with a sample size of 10,000.
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The sensitivity analysis described above was carried out using the method from [66] and MATLAB
files available from the website of Denise Kirschner’s Lab [67].
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