52 research outputs found

    Pharmacokinetics and pharmacodynamics of insulin aspart in patients with Type 2 diabetes: Assessment using a meal tolerance test under clinical conditions

    Get PDF
    Few studies have evaluated the pharmacokinetics of rapid-acting insulin analogues in patients with Type 2 diabetes, especially under clinical conditions. The aim of the present study was to assess both the pharmacokinetics and pharmacodynamics of insulin aspart in Type 2 diabetic patients who were being treated with the analogue alone. Meal tolerance tests with and without self-injection of a customary dose of insulin aspart (0.05-0.22 U/kg) were conducted in 20 patients in a randomized cross-over study. The dose of insulin aspart (per bodyweight) was significantly correlated with both the maximum concentration (r 2 = 0.59; P < 0.01) and area under the concentration-time curve for insulin aspart (r 2 = 0.53; P < 0.01). However, the time to maximum concentration (T max), which varied widely from < 60 to ≥ 120 min, was not associated with either dosage (r 2 = 0.02; P = 0.51) or body mass index (r 2 = 0.02; P = 0.57). Injection of insulin aspart exacerbated delayed hyperinsulinaemia after meal loading, mainly in patients with T max ≥ 120 min. With regard to pharmacodynamics, insulin aspart had favourable effects on postprandial hyperglycaemia, hyperglucagonaemia and hyperlipidaemia. The T max for this insulin analogue differed greatly between individuals and delayed hyperinsulinaemia was particularly exacerbated in patients with higher T max values. Identification of the factors contributing to interindividual variation in the absorption lag time is essential for improving the efficacy and safety of insulin aspart. © 2012 The Authors. Clinical and Experimental Pharmacology and Physiology © 2012 Blackwell Publishing Asia Pty Ltd

    Multicenter, single-blind, randomized controlled study of the efficacy and safety of favipiravir and nafamostat mesilate in patients with COVID-19 pneumonia

    Get PDF
    Objectives: To evaluate the efficacy and safety of nafamostat combined with favipiravir for the treatment of COVID-19. Methods: We conducted a multicenter, randomized, single-blind, placebo-controlled, parallel assignment study in hospitalized patients with mild-to-moderate COVID-19 pneumonia. Patients were randomly assigned to receive favipiravir alone (n = 24) or nafamostat with favipiravir (n = 21). The outcomes included changes in the World Health Organization clinical progression scale score, time to improvement in body temperature, and improvement in oxygen saturation (SpO2). Results: There was no significant difference in the changes in the clinical progression scale between nafamostat with favipiravir and favipiravir alone groups (median, -0.444 vs -0.150, respectively; least-squares mean difference, -0.294; P = 0.364). The time to improvement in body temperature was significantly shorter in the combination group (5.0 days; 95% confidence interval, 4.0-7.0) than in the favipiravir group (9.0 days; 95% confidence interval, 7.0-18.0; P =0.009). The changes in SpO2 were greater in the combination group than in the favipiravir group (0.526% vs -1.304%, respectively; least-squares mean difference, 1.831; P = 0.022). No serious adverse events or deaths were reported, but phlebitis occurred in 57.1% of the patients in the combination group. Conclusion: Although our study showed no differences in clinical progression, earlier defervescence, and recovery of SpO2 were observed in the combination group

    Metformin Prevents and Reverses Inflammation in a Non-Diabetic Mouse Model of Nonalcoholic Steatohepatitis

    Get PDF
    Background: Optimal treatment for nonalcoholic steatohepatitis (NASH) has not yet been established, particularly for individuals without diabetes. We examined the effects of metformin, commonly used to treat patients with type 2 diabetes, on liver pathology in a non-diabetic NASH mouse model. Methodology/Principal Findings: Eight-week-old C57BL/6 mice were fed a methionine- and choline-deficient plus high fat (MCD+HF) diet with or without 0.1% metformin for 8 weeks. Co-administration of metformin significantly decreased fasting plasma glucose levels, but did not affect glucose tolerance or peripheral insulin sensitivity. Metformin ameliorated MCD+HF diet-induced hepatic steatosis, inflammation, and fibrosis. Furthermore, metformin significantly reversed hepatic steatosis and inflammation when administered after the development of experimental NASH. Conclusions/Significance: These histological changes were accompanied by reduced hepatic triglyceride content, suppressed hepatic stellate cell activation, and the downregulation of genes involved in fatty acid metabolism, inflammation, and fibrogenesis. Metformin prevented and reversed steatosis and inflammation of NASH in an experimental non-diabetic model without affecting peripheral insulin resistance. © 2012 Kita et al

    Inverse Correlation between Serum Levels of Selenoprotein P and Adiponectin in Patients with Type 2 Diabetes

    Get PDF
    Background: We recently identified selenoprotein P (SeP) as a liver-derived secretory protein that causes insulin resistance in the liver and skeletal muscle; however, it is unknown whether and, if so, how SeP acts on adipose tissue. The present study tested the hypothesis that SeP is related to hypoadiponectinemia in patients with type 2 diabetes. Methodology/Principal Findings: We compared serum levels of SeP with those of adiponectin and other clinical parameters in 36 patients with type 2 diabetes. We also measured levels of blood adiponectin in SeP knockout mice. Circulating SeP levels were positively correlated with fasting plasma glucose (r = 0.35, P = 0.037) and negatively associated with both total and high-molecular adiponectin in patients with type 2 diabetes (r = 20.355, P = 0.034; r = 20.367, P = 0.028). SeP was a predictor of both total and high-molecular adiponectin, independently of age, body weight, and quantitative insulin sensitivity index (b = 20.343, P = 0.022; b = 20.357, P = 0.017). SeP knockout mice exhibited an increase in blood adiponectin levels when fed regular chow or a high sucrose, high fat diet. Conclusions/Significance: These results suggest that overproduction of liver-derived secretory protein SeP is connected with hypoadiponectinemia in patients with type 2 diabetes

    A liver-derived secretory protein, selenoprotein P, causes insulin resistance

    Get PDF
    金沢大学医薬保健研究域医学系The liver may regulate glucose homeostasis by modulating the sensitivity/resistance of peripheral tissues to insulin, by way of the production of secretory proteins, termed hepatokines. Here, we demonstrate that selenoprotein P (SeP), a liver-derived secretory protein, causes insulin resistance. Using serial analysis of gene expression (SAGE) and DNA chip methods, we found that hepatic SeP mRNA levels correlated with insulin resistance in humans. Administration of purified SeP impaired insulin signaling and dysregulated glucose metabolism in both hepatocytes and myocytes. Conversely, both genetic deletion and RNA interference-mediated knockdown of SeP improved systemic insulin sensitivity and glucose tolerance in mice. The metabolic actions of SeP were mediated, at least partly, by inactivation of adenosine monophosphate-activated protein kinase (AMPK). In summary, these results demonstrate a role of SeP in the regulation of glucose metabolism and insulin sensitivity and suggest that SeP may be a therapeutic target for type 2 diabetes. © 2010 Elsevier Inc

    Clinical Study Urinary Lactate Dehydrogenase Activity and Its Isozyme Patterns in Kawasaki Disease

    No full text
    Abnormal urinary findings, such as sterile pyuria, proteinuria, and microscopic hematuria, are often seen in the acute phase of Kawasaki disease (KD). We investigated the potential significance of urinary lactate dehydrogenase (U-LDH) activity and its isozyme patterns in KD. Total U-LDH activity and its isozymes (U-LDH1-5) levels were compared among 120 patients with KD, 18 patients with viral infection (VI), and 43 patients with upper urinary tract infection (UTI) and additionally compared between intravenous immunoglobulin (IVIG) responders ( = 89) and nonresponders ( = 31) with KD. Total U-LDH activity was higher in KD (35.4 ± 4.8 IU/L, &lt; 0.05) and UTI patients (66.0 ± 8.0 IU/L, &lt; 0.01) than in VI patients (17.0 ± 6.2 IU/L). In the isozyme pattern analysis, KD patients had high levels of U-LDH1 and U-LDH2, while UTI patients had high levels of U-LDH3, U-LDH4, and U-LDH5. Furthermore, IVIG nonresponders of KD had significantly higher levels of total U-LDH activity (45.1 ± 4.7 IU/L, &lt; 0.05), especially U-LDH1 and U-LDH2 ( &lt; 0.05), than IVIG responders (32.0 ± 2.8 IU/L). KD patients have increased levels of total U-LDH activity, especially U-LDH-1 and U-LDH2, indicating a unique pattern of U-LDH isozymes different from that in UTI patients
    corecore