18 research outputs found

    血中活性型インスリン様増殖因子を測定する新たなバイオアッセイの開発および非膵島細胞腫瘍性低血糖に対する活性型インスリン様増殖因子を分子標的とした治療戦略

    Get PDF
    京都大学0048新制・課程博士博士(医学)甲第19399号医博第4050号新制||医||1012(附属図書館)32424京都大学大学院医学研究科医学専攻(主査)教授 長船 健二, 教授 川口 義弥, 教授 小川 誠司学位規則第4条第1項該当Doctor of Medical ScienceKyoto UniversityDFA

    Intracranial hemorrhage in patients treated with bevacizumab: Report of two cases

    No full text
    Treatment with bevacizumab, an antiangiogenic agent, in patients with metastatic or unresectable colorectal cancer was approved less than 4 years ago in Japan. Bevacizumab improves the survival of patients with metastatic colorectal cancer; however, it may lead to complications such as bleeding, which are sometimes fatal. Bevacizumab should be administered only after careful consideration because the potential risks of therapy outweigh its benefits. Therefore, pharmaceutical companies do not recommend bevacizumab therapy for patients with brain metastases. While some reports support the cautious use of bevacizumab, others report that it is not always necessary to prohibit its use in patients with metastases to the central nervous system (CNS), including the brain. Thus, bevacizumab therapy in colorectal cancer patients with brain metastases is controversial, and it is unclear whether brain metastases are a risk factor for intracranial hemorrhage during anti-vascular endothelial growth factor (VEGF) therapy. We report a 64-year-old man and a 65-year-old man with recurrent colorectal cancer without brain metastases; these patients developed multifocal and solitary intracranial hemorrhage, respectively, after the administration of bevacizumab. Our findings suggest that intracranial hemorrhage can occur even if the patient does not have brain metastases prior to bevacizumab treatment and also suggest that brain metastases are not a risk factor for intracranial hemorrhage with bevacizumab treatment. These findings also question the necessity of excluding patients with brain metastases from clinical trials on anti-VEGF therapy

    Mitochondrial p32/C1qbp Is a Critical Regulator of Dendritic Cell Metabolism and Maturation

    No full text
    Summary: Dendritic cell (DC) maturation induced by Toll-like receptor agonists requires activation of downstream signal transduction and metabolic changes. The endogenous metabolite citrate has recently emerged as a modulator of DC activation. However, the metabolic requirements that support citrate production remain poorly defined. Here, we demonstrate that p32/C1qbp, which functions as a multifunctional chaperone protein in mitochondria, supports mitochondrial metabolism and DC maturation. Metabolic analysis revealed that the citrate increase induced by lipopolysaccharide (LPS) is impaired in p32-deficient DCs. We also found that p32 interacts with dihydrolipoamide S-acetyltransferase (E2 component of pyruvate dehydrogenase [PDH] complex) and positively regulates PDH activity in DCs. Therefore, we suggest that DC maturation is regulated by citrate production via p32-dependent PDH activity. p32-null mice administered a PDH inhibitor show decreased DC maturation and ovalbumin-specific IgG production in vivo, suggesting that p32 may serve as a therapeutic target for DC-related autoimmune diseases. : Although mitochondrial metabolic pathways are essential for DC activation, the precise molecular mechanism remains poorly understood. Gotoh et al. show that mitochondrial p32/C1qbp supports dendritic cell metabolism and maturation. In addition, mitochondrial p32 and pyruvate dehydrogenase activity are necessary for DC maturation in vitro and in vivo. Keywords: dendritic cell, mitochondria, p32/C1qbp, citrate, pyruvate dehydrogenas
    corecore