21 research outputs found

    A glutathione s-transferase confers herbicide tolerance in rice

    Get PDF
    Plant glutathione S-transferases (GSTs) have been a focus of attention due to their role in herbicide detoxification. OsGSTL2 is a glutathione S-transferase, lambda class gene from rice (Oryza sativa L.). Transgenic rice plants over-expressing OsGSTL2 were generated from rice calli by the use of an Agrobacterium transformation system, and were screened by a combination of hygromycin resistance, PCR and Southern blot analysis. In the vegetative tissues of transgenic rice plants, the over-expression of OsGSTL2 not only increased levels of OsGSTL2 transcripts, but also GST and GPX expression, while reduced superoxide. Transgenic rice plants also showed higher tolerance to glyphosate and chlorsulfuron, which often contaminate agricultural fields. The findings demonstrate the detoxification role of OsGSTL2 in the growth and development of rice plants. It should be possible to apply the present results to crops for developing herbicide tolerance and for limiting herbicide contamination in the food chain

    WAVE/Scars in Platelets

    No full text
    Using specific antibodies against isoforms of WAVE (WASP [Wiskott-Aldrich syndrome protein] family Verprolin-homologous protein, also called Scar), we demonstrated that human platelets express all 3 isoforms. With the use of an in vitro pull-down technique, the src homology 3 (SH3) domain of insulin receptor substrate p53 (IRSp53) precipitated WAVE2 from platelet lysates more efficiently than did profilin I. The opposite was true for WAVE1, and neither precipitated WAVE3, suggesting that WAVE isoforms have different affinities to these ligands, while the SH3 domain of abl binds to all 3 isoforms. The 3 WAVE isoforms were distributed in the actin-rich Triton X-100–insoluble pellets following platelet aggregation induced by thrombin receptor–activating peptide. We also found that all 3 WAVE isoforms are substrates for calpain in vivo and in vitro. Although portions of these 3 isoforms were commonly distributed in the actin- and actin-related protein 2 and 3 (Arp2/3)–rich edge of the lamellipodia in spreading platelets, only WAVE2 remained in the cell fringe following detergent extraction or fixation of the cells. Finally, by mass spectrometry, we found that the proteins, which reportedly interact with WAVE/Scars, are present in platelets. These data suggest that the 3 WAVE isoforms exhibit common and distinct features and may potentially be involved in the regulation of actin cytoskeleton in platelets
    corecore