370 research outputs found
Microscopic Evidence for Evolution of Superconductivity by Effective Carrier Doping in Boron-doped Diamond:11B-NMR study
We have investigated the superconductivity discovered in boron (B)-doped
diamonds by means of 11B-NMR on heteroepitaxially grown (111) and (100) films.
11B-NMR spectra for all of the films are identified to arise from the
substitutional B(1) site as single occupation and lower symmetric B(2) site
substituted as boron+hydrogen(B+H) complex, respectively. A clear evidence is
presented that the effective carriers introduced by B(1) substitution are
responsible for the superconductivity, whereas the charge neutral B(2) sites
does not offer the carriers effectively. The result is also corroborated by the
density of states deduced by 1/T1T measurement, indicating that the evolution
of superconductivity is driven by the effective carrier introduced by
substitution at B(1) site.Comment: 4 pages, 6 figures, to be published in Phys. Rev. B (Brief report
Cooling History and Redox State of NWA 8694 Chassignite: Comparison with Chassigny and NWA 2737
NWA 8694 is a new chassignite whose constituent minerals are more Fe-rich than those in the other known chassignites (Chassigny and NWA 2737), and may suggest a petrogenetic relationship to nakhlites. In this abstract we report mineralogy of NWA 8694 to infer its cooling rate and redox state, and discuss its thermal and shock history in comparison with other chassignites. NWA 8694 is a cumulate dunite of approximately 2 mm olivine with interstitial pyroxene and feldspar. Olivine is homogeneous (Fo(sub 55-56)), but Ca decreases at the approximately 50-100 micrometer rim (0.25-0.1 wt% CaO). Because the Ca-depleted rim is narrower than those in other chassignites (approximately 50 micrometer), NWA 8694 may have cooled slightly faster than the others (approximately 30 C/yr), but would be in the same order. Pyroxenes are low- and high-Ca pyroxenes, both exhibiting sub-micron exsolution textures (0.2-0.3 micrometer wide lamellae with the spacing of 0.8-1.8 micrometers). Although the low-Ca pyroxene host has an orthopyroxene composition (Wo approximately 2), the EBSD analysis suggests a pigeonite structure (P2(sub 1)/c), which is also reported from the Chassigny pyroxene. The size of exsolution texture is a bit smaller, but broadly similar to those in other chassignites, implying a similar fast cooling rate (35-43 C/yr). Feldspars are isotropic (plagioclase: clustered around An25Or10, K-feldspar: approximately An19Or78), suggestive of extensive shock metamorphism, consistent with undulatory extinction of olivine. Feldspar compositions are around the equilibrium isotherm of approximately 800 C. The olivine and chromite compositions give an equilibration temperature of 760-810 C and logfO2 of QFM+/-0.3. The inferred fast cooling rate and high fO2 of NWA 8694 are both similar to those of Chassigny and NWA 2737, and suggest a common formation condition (e.g., thick lava flow or shallow intrusion) under oxidizing condition. The Fe-rich mineral compositions of NWA 8694 may be due to crystallization from more fractionated melt than the other chassignites. The shock degree of NWA 8694 would be similar to Chassigny, but distinct from NWA 2737 with darkened olivine showing more extensive shock
Multiple Igneous Bodies for Nakhlites and Chassignites as Inferred from Olivine Cooling Rates using Calcium Zoning
Nakhlites and chassignites are ultramafic cumulate rocks of clinopyroxene and olivine, respec-tively, considered to have been formed in a thick lava flow or shallow intrusion near the Martian surface [e.g., 1,2]. Although more than 100 Martian meteorites have been found so far, most of them are shergottites and only nine nakhlites and three chassignites are known (considering paired samples) [3]. In contrast to shergottites which show large variations in both mineralogy and ages, nakhlites and chassignites are suggested to have been petrogenetically related, crystallized at about the same time and been ejected by the same impact event because of their identical crystallization (approximately 1.3 Ga) and cosmic-ray exposure (10-11 My) ages [e.g., 1]. In this study we discuss the possibility of a common igneous body for all samples belonging to these two groups as suggested by previous studies [e.g., 4]. To do this we estimated cooling rates of olivine using Ca zoning profiles, especially by paying attention to the newest samples of each group (NWA 10720 nakhlite and NWA 8694 chassignite)
Low-energy electrodynamics of superconducting diamond
Heavily-boron-doped diamond films become superconducting with critical
temperatures well above 4 K. Here we first measure the reflectivity of
such a film down to 5 cm, by also using Coherent Synchrotron Radiation.
We thus determine the optical gap, the field penetration depth, the range of
action of the Ferrell-Glover-Tinkham sum rule, and the electron-phonon spectral
function. We conclude that diamond behaves as a dirty BCS superconductor.Comment: 4 pages including 3 figure
Mineralogical Comparison of Olivine in Shergottites and A Shocked L Chondrite: Implications for Shock Histories of Brown Olivine
Most Martian meteorites are heavily shocked, exhibiting numerous shock features, for example undulatory extinction of olivine and pyroxene, the presence of diaplectic glass ("maskelynite") and the formation of shock melt. Among these shock features, olivine darkening ("brown" olivine) is unique in Martian meteorites because no other meteorite group shows such a feature. Although the presence of brown olivine in shergottites was reported thirty years ago, detailed observation by TEM has not been performed until the NWA 2737 chassignite was discovered, whose olivine is darkened, being completely black in hand specimen. Fe metal nano-particles were found in NWA 2737 olivine which are considered to have been formed by olivine reduction during heavy shock. Subsequently, magnetite nano-particles were also found in other Martian meteorites and the coexistence of Fe metal and magnetite nano-particles was reported in the NWA 1950 shergottite and some Fe metal nano-particles were mantled by magnetite. Therefore, the formation process of nano-particles seems to be complex. Because "brown" olivine is unique to Martian meteorites, they have a potential to constrain their shock conditions. In order to better understand the shock history of Martian meteorites, we compared olivine in several shergottites with that in a highly-shocked L chondrite which contains ringwoodite
Factorization, reduction and embedding in integrable cellular automata
Factorized dynamics in soliton cellular automata with quantum group symmetry
is identified with a motion of particles and anti-particles exhibiting pair
creation and annihilation. An embedding scheme is presented showing that the
D^{(1)}_n-automaton contains, as certain subsectors, the box-ball systems and
all the other automata associated with the crystal bases of non-exceptional
affine Lie algebras. The results extend the earlier ones to higher
representations by a certain reduction and to a wider class of boundary
conditions.Comment: LaTeX2e, 20 page
Advantage on Superconductivity of Heavily Boron-Doped (111) Diamond Films
The superconductivity transition temperatures Tc(onset) of 11.4 K and
Tc(offset) of 7.4 K, which are the highest in diamond at present, are realized
on homoepitaxially grown (111) diamond films with a high boron doping
concentration of 8.4E21 cm-3 (4.7 atomic percent). Tc values of (111) diamond
films are more than twice as high as those of (100) films at the equivalent
boron concentration. The Tc of boron-doped (111) diamond increases as the boron
content increases up to the maximum incorporated concentration and is agrees
with the value estimated using McMillan's equation. The advantageous Tc for
(111) diamond films is due to the higher carrier concentration which exceeds
its boron concentration.Comment: 22 pages, 6 figure
Creation of ballot sequences in a periodic cellular automaton
Motivated by an attempt to develop a method for solving initial value
problems in a class of one dimensional periodic cellular automata (CA)
associated with crystal bases and soliton equations, we consider a
generalization of a simple proposition in elementary mathematics. The original
proposition says that any sequence of letters 1 and 2, having no less 1's than
2's, can be changed into a ballot sequence via cyclic shifts only. We
generalize it to treat sequences of cells of common capacity s > 1, each of
them containing consecutive 2's (left) and 1's (right), and show that these
sequences can be changed into a ballot sequence via two manipulations, cyclic
and "quasi-cyclic" shifts. The latter is a new CA rule and we find that various
kink-like structures are traveling along the system like particles under the
time evolution of this rule.Comment: 31 pages. Section 1 changed and section 5 adde
- …