32 research outputs found

    De novo NSF mutations cause early infantile epileptic encephalopathy

    Get PDF
    N‐ethylmaleimide‐sensitive factor (NSF) plays a critical role in intracellular vesicle transport, which is essential for neurotransmitter release. Herein, we, for the first time, document human monogenic disease phenotype of de novo pathogenic variants in NSF, that is, epileptic encephalopathy of early infantile onset. When expressed in the developing eye of Drosophila, the mutant NSF severely affected eye development, while the wild‐type allele had no detectable effect under the same conditions. Our findings suggest that the two pathogenic variants exert a dominant negative effect. De novo heterozygous mutations in the NSF gene cause early infantile epileptic encephalopathy

    A novel missense PTEN mutation identified in a patient with macrocephaly and developmental delay

    Get PDF
    Phosphatase and tensin homolog (PTEN) plays an important role in tumor suppression. A germline mutation in the PTEN gene induces not only PTEN hamartoma tumor syndrome, including Cowden syndrome, but also macrocephaly/autism syndrome. Here, we describe a boy with macrocephaly/ autism syndrome harboring a novel missense heterozygous PTEN mutation, c.959T>C (p.Leu320Ser). Interestingly, a previously reported nonsense mutation resulting in p.Leu320X was found in Cowden syndrome patients. Our case may be suggestive of a genotype-phenotype correlation

    A case of autism spectrum disorder with cleft lip and palate carrying a mutation in exon 8 of AUTS2

    Get PDF
    We report a patient with autism and cleft lip and palate carrying a de novo heterozygous AUTS2 mutation, c.1464_1467del ACTC (p.Tyr488*). Although the causal relationship between cleft lip and palate and this mutation is unclear, this case report may expand the clinical phenotype of AUTS2 syndrome

    Parkinsonism in spinocerebellar ataxia with axonal neuropathy caused by adult-onset COA7 variants: a case report

    No full text
    Abstract Background Individuals with variants of cytochrome c oxidase assembly factor 7 (COA7), a mitochondrial functional-related gene, exhibit symptoms of spinocerebellar ataxia with axonal neuropathy before the age of 20. However, COA7 variants with parkinsonism or adult-onset type cases have not been described. Case presentation We report the case of a patient who developed cerebellar symptoms and slowly progressive sensory and motor neuropathy in the extremities, similar to Charcot-Marie-Tooth disease, at age 30, followed by parkinsonism at age 58. Exome analysis revealed COA7 missense mutation in homozygotes (NM_023077.2:c.17A > G, NP_075565.2: p.Asp6Gly). Dopamine transporter single-photon emission computed tomography using a 123I-Ioflupane revealed clear hypo-accumulation in the bilateral striatum. However, 123I-metaiodobenzylguanidine myocardial scintigraphy showed normal sympathetic nerve function. Levodopa administration improved parkinsonism in this patient. Conclusions COA7 gene variants may have caused parkinsonism in this case because mitochondrial function-related genes, such as parkin and PINK1, are known causative genes in some familial Parkinson’s diseases

    Mutation of PTPN11 (Encoding SHP-2) Promotes MEK Activation and Malignant Progression in Neurofibromin-Deficient Cells in a Manner Sensitive to BRAP Mutation

    No full text
    Germline mutations of NF1 cause neurofibromatosis type 1 (NF1) through the activation of the RAS signaling pathway, and some NF1 patients develop malignant peripheral nerve sheath tumors (MPNSTs). Here, we established subclones of the human NF1-MPNST cell line sNF96.2 that manifest increased tumorigenic activity and increased phosphorylation of the protein kinases MEK and Akt relative to the parental cells. Genomic DNA sequencing identified 14 additional heterozygous mutations within the coding regions of 13 cancer- and other disease-related genes in these subclones. One of these genes, PTPN11, encodes SHP-2, and the forced expression of the identified G503V mutant of SHP-2 increased both tumorigenic activity and MEK phosphorylation in parental sNF96.2 cells, suggesting that the combination of PTPN11 and NF1 mutations induces the pathological activation of the RAS pathway. These effects of SHP-2 (G503V) were inhibited by the coexpression of the G370A mutant of BRAP, which was also detected in the highly malignant subclones, and this inhibition was accompanied by the calpain-dependent cleavage of SHP-2 (G503V). The cleavage of SHP-2 (G503V) and suppression of MEK phosphorylation mediated by BRAP (G370A) were not detected in NF1-intact (HeLa) cells. Tumor promotion by SHP-2 (G503V) and its suppression by BRAP (G370A) may serve as a basis for the development of new treatment strategies for NF1
    corecore