17 research outputs found

    Preliminary results of phase I trial of oral uracil/tegafur (UFT), leucovorin plus irinotecan and radiation therapy for patients with locally recurrent rectal cancer

    Get PDF
    BACKGROUND: Surgical attempts for locally recurrent rectal cancer often fail due to local re-recurrence and distant metastasis. Preoperative chemoradiation may enhance better local control and survival. The aim of this study was to assess the safety of oral uracil and tegafur (UFT) plus leucovorin (LV), and irinotecan combined with radiation and determine the maximum-tolerated dose (MTD) and dose limiting toxicity (DLT) of the triple drug regimen. PATIENTS AND METHODS: Patients with locally recurrent rectal cancer received escalating doses of irinotecan on days 1, 8, 15, and 22 (starting at 30 mg/m(2), with 10 mg increments between consecutive cohorts) and fixed doses of UFT (300 mg/m(2)) plus LV (75 mg/day) on days 3 to 7, 10 to 14, 17 to 21, and 24 to 28. Radiation was given 5 days per week totaling 40 to 50 Gy (2Gy/day). RESULTS: Six patients were treated at the starting dose, and 2 received the full scheduled chemoradiotherapy. The other 4 patients had grade 3 diarrhea and diarrhea was the DLT. One patient had partial response and he had subsequently radical surgical resection. Median progression free survival for local recurrence was 320 days. CONCLUSION: Irinotecan plus UFT/LV with concomitant radiotherapy in patients with locally recurrent rectal cancer was not feasible due to diarrhea in this setting. Modification of the treatment is needed

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Suppression of formation of dioxins in combustion gas of municipal waste incinerators by spray water injection.

    Get PDF
    Dioxins in the combustion gas of municipal solid waste incinerators (MSWIs) are resynthesized when the combustion gas passes from the outlet exaust gas boiler to the outlet gas duct. The objective of the study was to estimate if the suppression of the formation of dioxins depends on the inlet gas temperature and diameter and/or temperature of droplet spray water using an actual incinerator operation data. The dioxin formation and/or the quenching temperature is revealed using the Altwicker theory equation with the information of inlet gas temperature and droplet spray water. The evaporation rate of a spray water droplet also can be estimated using the Mizutani theory. The highest dioxin formation was found at 350 degrees C; thereafter, it decreased quickly. When an area of 500 microm for droplet-formed dioxins is defined as 100%, the values of formed dioxins for 400, 300, 200 and 100 microm droplet areas are estimated as 71, 41, 25 and 18%, respectively. It is revealed that the smaller size of droplet spray water and lower inlet gas temperature enable the decrease in dioxin formation. The decreased dioxin formation and/or the lower quenching temperature is revealed using the Altwicker theory equation with the information of inlet gas temperature and droplet spray water size

    In vitro evaluation of atmospheric particulate matter and sedimentation particles using yeast bioassay system.

    Get PDF
    Little information on the evaluation of airborne particulate matter (APM) and sedimentation particles from subway stations is available. The thermal metamorphism of train wheels generating toxic particles in subway stations is a possibility. In this study, the toxicity and physiological effects of particles from subway stations were evaluated using a yeast bioassay system. Estrogenic and antiestrogenic activities of APM in APM extracts from subway stations were determined. No estrogenic activity was found in the APM fractions and their S9-activated APM samples. Sedimentation dust samples also showed no estrogen activity. In contrast, extracts from sedimentation dust samples showed antiestrogen activity. Marked yeast toxicity was observed in the samples extracted from sedimentation dust. Potent yeast toxicity was also found in the S9-activated extracts from sedimentation dust. The results suggest that sedimentation dust from a semiclosed area of a subway system has antiestrogen activity, although both the origin and generation system of this activity are uncertain. These pollutants in sedimentation dust may change to a more toxic form in vivo by S9 activation

    Hormonal activity of polycyclic musks evaluated by reporter gene assay.

    Get PDF
    Synthetic musk fragrance compounds, such as polycyclic musks (PCMs), are a group of chemicals used extensively as personal care products, and can be found in the environment and the human body. PCMs, such as 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexa-methylcyclopenta-gamma-2-benzopyran (HHCB) and 7-acetyl-1,1,3,4,4,6-hexamethyltetralin (AHTN), are known to have agonistic activities toward human estrogen receptor alpha (hERalpha) and hERbeta, and have antagonistic activity toward the human androgen receptor (hAR), as shown in several reporter gene assays. However, little is known about the interaction of PCMs with the human thyroid hormone receptor (hTR), and the hormonal effects of other PCMs except for HHCB and AHTN. In this study, we focus on the interactions of six PCMs, namely, HHCB, AHTN, 4-acetyl-1,1-dimethyl-6-tert-butyl-indan (ADBI), 6-acetyl-1,1,2,3,3,5-hexamethylindan (AHMI), 6,7-dihydro-1,1,2,3,3-pentamethyl-4(5H)-indanone (DPMI), and 5-acetyl-1,1,2,6-tetramethyl-3-isopropy-lindan (ATII) with hERalpha, hAR, and hTRbeta by in vitro reporter gene assay using Chinese hamster ovary cells. All the samples were found to be agonists toward hERalpha, whereas no agonistic activities of these PCMs for hAR and hTRbeta were observed. No antagonistic activities for hERalpha and hTRbeta were observed at the concentrations tested. However, several PCMs, namely, HHCB, AHTN, ATII, ADBI, and AHMI, showed dose-dependent antagonistic activities for hAR, and the IC50 values of these compounds were estimated to be 1.0 x 10(-7), 1.5 x 10(-7), 1.4 x 10(-7), 9.8 x 10(-6), and 1.4 x 10(-7) M, respectively. The results suggest that these PCMs interact with hERalpha and hAR but have no hormonal effect on hTRbeta. This is the first report on the agonistic and antagonistic activities of ATII, ADBI, AHMI, and DPMI for hERalpha and hAR as determined by in vitro reporter gene assay using stably transfected Chinese hamster ovary cells
    corecore