142 research outputs found

    Avian response to early tidal salt marsh restoration at former commercial salt evaporation ponds in San Francisco Bay, California, USA

    Get PDF
    Restoration of former commercial salt evaporation ponds in the San Francisco Bay estuary is intended to reverse a severe decline (\u3e79%) in tidal salt marshes. San Francisco Bay is a critical migratory stopover site and wintering area for shorebirds and waterfowl, and salt ponds are important high tide roosting and foraging areas. Conservation of past bird abundance is a stated goal of area restoration projects, and early adaptive management will be critical for achieving this objective. However, initial avian response at sites restored to tidal flow may not be indicative of long-term results. For example, winter shorebirds at a 529 ha pond breached in 2002 showed a marked increase in shorebird abundance following breaching. Shorebirds comprised 1% of area totals during 1999-2002 and increased to 46% during 2003-2008. These changes accompanied increased tidal range and sedimentation, but minimal vegetation establishment. Conversely, a fully vegetated, restored 216 ha pond in the same system consistently supported less than 2% of all waterbirds in the region. Early restoration may temporarily increase habitat, but managed ponds will be needed for long-term waterbird abundance within a restored pond-marsh system

    The Aerosphere as a Network Connector of Organisms and Their Diseases

    Get PDF
    Aeroecological processes, especially powered flight of animals, can rapidly connect biological communities across the globe. This can have profound consequences for evolutionary diversification, energy and nutrient transfers, and the spread of infectious diseases. The latter is of particular consequence for human populations, since migratory birds are known to host diseases which have a history of transmission into domestic poultry or even jumping to human hosts. In this chapter, we present a scenario under which a highly pathogenic avian influenza (HPAI) strain enters North America from East Asia via postmolting waterfowl migration. We use an agent-based model (ABM) to simulate the movement and disease transmission among 106 generalized waterfowl agents originating from ten molting locations in eastern Siberia, with the HPAI seeded in only ~102 agents at one of these locations. Our ABM tracked the disease dynamics across a very large grid of sites as well as individual agents, allowing us to examine the spatiotemporal patterns of change in virulence of the HPAI infection as well as waterfowl host susceptibility to the disease. We concurrently simulated a 12-station disease monitoring network in the northwest USA and Canada in order to assess the potential efficacy of these sites to detect and confirm the arrival of HPAI. Our findings indicated that HPAI spread was initially facilitated but eventually subdued by the migration of host agents. Yet, during the 90-day simulation, selective pressures appeared to have distilled the HPAI strain to its most virulent form (i.e., through natural selection), which was counterbalanced by the host susceptibility being conversely reduced (i.e., through genetic predisposition and acquired immunity). The monitoring network demonstrated wide variation in the utility of sites; some were clearly better at providing early warnings of HPAI arrival, while sites further from the disease origin exposed the selective dynamics which slowed the spread of the disease albeit with the result of passing highly virulent strains into southern wintering locales (where human impacts are more likely). Though the ABM presented had generalized waterfowl migration and HPAI disease dynamics, this exercise demonstrates the power of such simulations to examine the extremely large and complex processes which comprise aeroecology. We offer insights into how such models could be further parameterized to represent HPAI transmission risks as well as how ABMs could be applied to other aeroecological questions pertaining to individual-based connectivity

    The Aerosphere as a Network Connector of Organisms and Their Diseases

    Get PDF
    Aeroecological processes, especially powered flight of animals, can rapidly connect biological communities across the globe. This can have profound consequences for evolutionary diversification, energy and nutrient transfers, and the spread of infectious diseases. The latter is of particular consequence for human populations, since migratory birds are known to host diseases which have a history of transmission into domestic poultry or even jumping to human hosts. In this chapter, we present a scenario under which a highly pathogenic avian influenza (HPAI) strain enters North America from East Asia via postmolting waterfowl migration. We use an agent-based model (ABM) to simulate the movement and disease transmission among 106 generalized waterfowl agents originating from ten molting locations in eastern Siberia, with the HPAI seeded in only ~102 agents at one of these locations. Our ABM tracked the disease dynamics across a very large grid of sites as well as individual agents, allowing us to examine the spatiotemporal patterns of change in virulence of the HPAI infection as well as waterfowl host susceptibility to the disease. We concurrently simulated a 12-station disease monitoring network in the northwest USA and Canada in order to assess the potential efficacy of these sites to detect and confirm the arrival of HPAI. Our findings indicated that HPAI spread was initially facilitated but eventually subdued by the migration of host agents. Yet, during the 90-day simulation, selective pressures appeared to have distilled the HPAI strain to its most virulent form (i.e., through natural selection), which was counterbalanced by the host susceptibility being conversely reduced (i.e., through genetic predisposition and acquired immunity). The monitoring network demonstrated wide variation in the utility of sites; some were clearly better at providing early warnings of HPAI arrival, while sites further from the disease origin exposed the selective dynamics which slowed the spread of the disease albeit with the result of passing highly virulent strains into southern wintering locales (where human impacts are more likely). Though the ABM presented had generalized waterfowl migration and HPAI disease dynamics, this exercise demonstrates the power of such simulations to examine the extremely large and complex processes which comprise aeroecology. We offer insights into how such models could be further parameterized to represent HPAI transmission risks as well as how ABMs could be applied to other aeroecological questions pertaining to individual-based connectivity

    A Remote Sensing Approach to Assess the Historical Invasion of \u3cem\u3ePhragmites australis\u3c/em\u3e in a Brackish Coastal Marsh

    Get PDF
    Introduction: Coastal estuarine wetlands provide important habitats for a variety of endemic flora and fauna but are particularly vulnerable to biological invasions. Regular monitoring of changes in these vulnerable wetlands has become increasingly important for effective management, especially considering threats from climate change effects and human disturbance. Historical analyzes of plant invasions may guide targeted management strategies to eradicate harmful species. Estimating the distribution of invasive species has never been more accessible with the improved availability of high-resolution data and innovations in remote sensing, estimating the distribution of invasive species has never been more accessible. Methods: We assessed the spread of non-native Phragmites australis subsp. australis in Suisun Marsh on the upper San Francisco Estuary, one of the largest brackish coastal wetlands in North America. Suisun Marsh consists of managed and tidal wetlands, and efforts have been made to control invasive P. australis on the managed wetlands to support habitat values for wildlife. We used remote-sensing analyzes of publicly available, biennial color-infrared images taken by the National Agriculture Imagery Program (NAIP) to map the expansion of invasive P. australis across two decades. We generated random forest classifications of representative images to map the distribution of P. australis, then calculated a variety of metrics describing the rate and spatial extent of the P. australis spread. Additionally, we ran generalized linear models to examine factors related to the growth of P. australis. Results: Our classifications yielded accuracies of over 90% and showed a 234% (1,084 ha) increase in P. australis between 2003 and 2018. The expansion rate of P. australis patches averaged 1.32 m/year (±0.53 SD) which is higher than most reported in the literature. We found that P. australis expansion in managed areas within levees was significantly correlated with invasion in tidal areas outside the levees on the same parcel and also related to its spread on adjacent parcels. Discussion: Our findings suggest that despite individual landowner management efforts, P. australis has continued to expand substantially throughout Suisun Marsh. Future efforts to treat invasive P. australis may require emphasizing adaptive, collaborative management rather than individual management strategies to ensure the invasive species is eradicated on a large scale to preserve the valued ecosystem functions

    Could changes in the agricultural landscape of northeastern China have influenced the long-distance transmission of highly pathogenic avian influenza H5Nx viruses?

    Get PDF
    In the last few years, several reassortant subtypes of highly pathogenic avian influenza viruses (HPAI H5Nx) have emerged in East Asia. These new viruses, mostly of subtype H5N1, H5N2, H5N6, and H5N8 belonging to clade 2.3.4.4, have been found in several Asian countries and have caused outbreaks in poultry in China, South Korea, and Vietnam. HPAI H5Nx also have spread over considerable distances with the introduction of viruses belonging to the same 2.3.4.4 clade in the U.S. (2014-2015) and in Europe (2014-2015 and 2016-2017). In this paper, we examine the emergence and spread of these new viruses in Asia in relation to published datasets on HPAI H5Nx distribution, movement of migratory waterfowl, avian influenza risk models, and land-use change analyses. More specifically, we show that between 2000 and 2015, vast areas of northeast China have been newly planted with rice paddy fields (3.21 million ha in Heilongjiang, Jilin, and Liaoning) in areas connected to other parts of Asia through migratory pathways of wild waterfowl. We hypothesize that recent land use changes in northeast China have affected the spatial distribution of wild waterfowl, their stopover areas, and the wild-domestic interface, thereby altering transmission dynamics of avian influenza viruses across flyways. Detailed studies of the habitat use by wild migratory birds, of the extent of the wild-domestic interface, and of the circulation of avian influenza viruses in those new planted areas may help to shed more light on this hypothesis, and on the possible impact of those changes on the long-distance patterns of avian influenza transmission
    • …
    corecore