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The Aerosphere as a Network Connector
of Organisms and Their Diseases 17
Jeremy D. Ross, Eli S. Bridge, Diann J. Prosser, and John Y. Takekawa

Abstract

Aeroecological processes, especially powered flight of animals, can rapidly

connect biological communities across the globe. This can have profound

consequences for evolutionary diversification, energy and nutrient transfers,

and the spread of infectious diseases. The latter is of particular consequence

for human populations, since migratory birds are known to host diseases which

have a history of transmission into domestic poultry or even jumping to human

hosts. In this chapter, we present a scenario under which a highly pathogenic

avian influenza (HPAI) strain enters North America from East Asia via post-

molting waterfowl migration. We use an agent-based model (ABM) to simulate

the movement and disease transmission among 106 generalized waterfowl

agents originating from ten molting locations in eastern Siberia, with the HPAI

seeded in only ~102 agents at one of these locations. Our ABM tracked the

disease dynamics across a very large grid of sites as well as individual agents,

allowing us to examine the spatiotemporal patterns of change in virulence of the

HPAI infection as well as waterfowl host susceptibility to the disease. We

concurrently simulated a 12-station disease monitoring network in the northwest

USA and Canada in order to assess the potential efficacy of these sites to detect

and confirm the arrival of HPAI. Our findings indicated that HPAI spread was

initially facilitated but eventually subdued by the migration of host agents. Yet,
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during the 90-day simulation, selective pressures appeared to have distilled the

HPAI strain to its most virulent form (i.e., through natural selection), which was

counterbalanced by the host susceptibility being conversely reduced (i.e.,

through genetic predisposition and acquired immunity). The monitoring network

demonstrated wide variation in the utility of sites; some were clearly better at

providing early warnings of HPAI arrival, while sites further from the disease

origin exposed the selective dynamics which slowed the spread of the disease

albeit with the result of passing highly virulent strains into southern wintering

locales (where human impacts are more likely). Though the ABM presented had

generalized waterfowl migration and HPAI disease dynamics, this exercise

demonstrates the power of such simulations to examine the extremely large

and complex processes which comprise aeroecology. We offer insights into how

such models could be further parameterized to represent HPAI transmission

risks as well as how ABMs could be applied to other aeroecological questions

pertaining to individual-based connectivity.

1 Introduction

Movement through the air, once achieved, could be perceived as an entry to all

areas of the world touched by the wind. The barriers that affect biological connec-

tivity in terrestrial or aquatic ecosystems are much less pronounced in wide-open

skies. Yet, the air column and dynamic processes therein which comprise the

“aerosphere” present their own ecological pressures, which can dictate the flow

of volant organisms relative to the underlying landscape, other airborne species and

materials, and the airmass itself. In the case of vertebrates, sustained movements

through the aerosphere are the result of powered flights where the direction,

duration, and daily distance traveled are both intrinsically and extrinsically con-

trolled. The balance between a genetically mediated migratory program and phe-

notypic flexibility produces complex interactions that further mediate the flight

behaviors of vertebrates. The ease with which a species can transverse a landscape

springs from the sum effect of piecemeal decisions (Taylor et al. 1993). Because of

this, characterizing the movements of a species or population likely requires that we

examine flight through the aerosphere at the lowest denominator: the individual

(Morales et al. 2010).

Advances in tracking individuals using technology such as light-level archival

geolocators, satellite transmitters, GPS tags, and tissue stable isotope analyses have

begun to reveal much about individual variation and population patterns in verte-

brate flight behavior (Cooke et al. 2004; Hobson and Norris 2008; Robinson et al.

2010; Bridge et al. 2011; McKinnon et al. 2013; Kays et al. 2015) or, possibly,

in-flight physiology (Gumus et al. 2015). However, scaling such efforts to more

widely encompassing levels remains logistically challenging if not prohibitively

expensive (Cagnacci et al. 2010; Hebblewhite and Haydon 2010). Because of this,

current endeavors to track individual movements may be restricted in their ability to
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broadly represent movement behavior variation throughout species’ regional or

range-wide populations. Data-informed models of individual movements within a

simulation framework show promise in filling otherwise-unreachable knowledge

gaps regarding biological phenomena (DeAngelis and Mooij 2005; Tang and

Bennett 2010). Relevant to this volume is how vertebrates move through the

aerosphere and, by extension, the ease with which optimized flight strategies can

connect populations and biological communities across broad spatial scales

(Alerstam 2011).

The implications of better resolving individual movements through the

aerosphere as a component of geographic connectivity are likely to enhance various

biological disciplines: from evolution, landscape ecology, conservation biology,

resource management, and behavior to broadly integrative macrosystem studies.

For instance, it is generally thought that capacity for long-distance flight often

reduces the impermeability of landscape features that would otherwise be barriers

to species with greater movement restrictions (Wiens 1976; Taylor et al. 1993),

including non-migratory birds (Harris and Reed 2002). Because of this, flying

animals with expansive ranges such as migratory birds are often found to show

only modest, if any, phylogeographic variation (Zink 1996; Sutherland et al. 2000;

von R€onn et al. 2016). Yet, in many cases migratory constraints within a species

appear to have contributed to some degree of geographic diversification (see

Chap. 11; Irwin 2002; Pérez-Tris et al. 2004; Delmore and Irwin 2014). By

simulating potentially subtle barriers to migratory and breeding dispersal using

agent-based models (ABMs; alternatively, “individual-based models”), we may

have the opportunity to uncover evolutionarily significant patterns within highly

vagile species. This includes integrating the available information about the spe-

cies’ migratory biology and simulating probable real-world scenarios (Bowlin et al.

2010; MacPherson and Gras 2016).

ABM simulations extend our ability to model natural phenomena to include

complex interactions among multiple different types of agents. These may include

vector agents that are capable of traversing the simulation arena or static agents that

occupy the same spatial arena but may dynamically change during the simulation

(e.g., a vegetated area which sprouts, blooms, seeds, and senesces over time). Since

ABMs can be tailored to any geographic or temporal scale, even slow-developing

or locally subtle patterns among agent interactions can be examined, despite the

complexity of ecological or evolutionary processes. For example, the seasonal flow

of energy and nutrients as a result of animal migration may be difficult to quantify

using standard field techniques, since the deposition of waste or carcasses are

relatively rarely detected events (outside of huge aggregation sites). Yet, we

understand that migratory birds regularly move through the aerosphere to exploit

seasonal pulses of resources (Alerstam et al. 2003; Bowlin et al. 2010;

Shariatinajafabadi et al. 2014; Si et al. 2015), and so the influx and exodus of

billions of individuals, with associated depredations and depositions along the way,

certainly must collectively have a nontrivial impact in terms of the redistribution of

energy and nutrients (Bauer and Hoye 2014). A properly parameterized ABM could

not only outline what this redistribution might entail at stopover sites, it may also
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predict what transitory impacts this may have where migratory flight paths aggre-

gate over otherwise unsuitable stopover habitat (e.g., over open water of the Great

Lakes region of North America).

Perhaps the most pressing cause for studying connectivity among species and the

landscape is the potential threat posed by continental-scale transmission of highly

pathogenic avian influenza (HPAI) via migratory birds. These long-distance

migrants may be the primary conduit by which certain diseases could traverse

continents and jump dispersal barriers, such as mountain ranges or oceans. HPAI

is of particular concern because recent outbreaks among domestic fowl in East

Asia, Europe, and North America were thought to be mediated by wild birds

(Okazaki et al. 2000; Hulse-Post et al. 2005; Gilbert et al. 2006; Kilpatrick et al.

2006; Alexander and Brown 2009; Feare 2010). This disease is also naturally

prevalent in the environment (Winker and Gibson 2010), and it shows high trans-

missibility, morbidity, mutability, and potential for jumping to mammalian hosts

(Kapan et al. 2006; Olsen et al. 2006; Taubenberger and Kash 2016). A worst-case

scenario is that a virulent HPAI strain capable of switching hosts to infect human

populations becomes spread across a wide landscape through the flights of wild

birds (Tan et al. 2015). Countering disease transmission and host switching is best

accomplished through a coordinated detection-and-response network (Wagner et al.

2001; Jebara 2004; Choffnes et al. 2007; Silkavute et al. 2013; Xu et al. 2013). As

with any threat to human life, early and accurate detection of a disease is critical if

mitigation is to be effective. These actions may include quarantines or inoculations

of potentially exposed humans or similar measures among possible animal vectors,

with the additional option of population culls of domestic fowl or hazing wild host

populations (DeLiberto et al. 2011; Wobeser 2013).

Best management practices dictate that limited pools of funding should be

directed to maximize the intended outcome. In the case of HPAI monitoring, this

hinges upon one critical need: to detect the disease while there remains an opportu-

nity to halt an outbreak. This “make-or-break” scenario puts tremendous pressure

on monitoring agencies to have an expansive focus and to swiftly and accurately

diagnose HPAI in the field. Accomplishing this task naively would necessitate a

costly outpouring of resources just to capture the earliest signs of disease infiltration

or host shifting. Coordinated monitoring networks, such as the United States

Geological Service’s Wildlife Health Information Sharing Partnership event

reporting system (WHISPers; https://www.nwhc.usgs.gov/whispers/), show great

promise at early detection of HPAI, although the efficacy of these endeavors is still

reliant upon sufficient sampling, accuracy, and timely reporting by field observers.

Fail-safe disease monitoring regimes can not only be expensive and challenging

to coordinate, but may be also difficult to grade for accuracy and efficacy. The static

models and formulas currently used to determine sampling needs for detecting a

disease hinge upon uncertainty parameters which can be broad (e.g., severity of

exposure events, distribution and virulence of zoonotic infective source; Yang et al.

2007). In many cases, the assessments of how well monitoring regimes are actually

functioning have mostly been limited to preparedness indicator surveys (ECDC

2007; Azziz-Baumgartner et al. 2009) or, when the system fails, a retroactive
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assessment of shortcomings (Balicer et al. 2007; Scallan 2007). As a low-cost and

promising alternative, ABM simulations may be a useful tool for making proactive

assessments of HPAI monitoring networks and possibly optimizing their effective-

ness relative to cost. With this in mind, we have constructed a realistic ABM which

simulates a hypothetical HPAI transmission into North America from Asia and

concordantly tests the efficacy of a theoretical monitoring network to detect the

disease before it has progressed to an outbreak stage.

The ABM presented in this chapter incorporates underlying biological principles

related to both large-scale bird migration and the Susceptible-Exposed-Infected-

Recovered (SEIR) model of disease dynamics (Keeling and Rohani 2008). How-

ever, instead of using static population-level metrics within the SEIR model, we

have leveraged the power of the ABM simulation framework to allow the SEIR

factors to dynamically evolve during the course of the simulation. This is likely to

more accurately reflect the reality in nature, since viruses such as avian influenza

have the capacity to rapidly mutate into more virulent strains just as their hosts have

the capacity to alter their individual susceptibility and/or probability of recovery

through acquired immunity (Bourouiba et al. 2011; Pybus et al. 2013). In effect, our

ABM is designed to parameterize the probability of low-incidence, high-risk

disease transmission that would otherwise be difficult to trace, even from extensive

sampling regimes. Such a model is not only informed by existing knowledge but

can, in turn, guide future empirical studies by exposing knowledge gaps (Harris

et al. 2015), aeroecological limiting factors (Lam et al. 2012), or critical nodes

within disease monitoring networks (Ferguson et al. 2006; Boyce et al. 2009).

Our entire case-study simulation is couched under the topic of this chapter—the

aerosphere as a connector—to illustrate how animal movement through the air may

(or may not) facilitate rapid translocations and can effectively reduce the ecological

divisiveness of what would otherwise be impenetrable geographic boundaries,

resulting in the mixing of biological agents over large geographic extents. Building

upon the paradigm of ABM operation described in Chap. 11, we now demonstrate

how movement through the aerosphere can drive interspecific dynamics in the form

of intercontinental spread of disease.

2 Constructing the Agent-Based Model

The applicability of models of increasing complexity depends upon how well their

core components are built to emulate the processes of study. Building an ABM—

especially of something as complex as disease transmission, evolution, and moni-

toring during the intercontinental migration of a very large population of a

generalized waterfowl species—required that we first start with basic models of

agent movement and then added levels of increasing complexity in stages. In our

case, we built the ABM in the following five major stages:

1. Parameterize the autumn migration of a generalized “waterfowl” species

according to simple movement and stopover rules
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2. Include more complex rules for individual waterfowl stopover and aggregation

decisions

3. Add a transmissible waterfowl-borne viral disease (i.e., HPAI) as well as

individual variation in disease susceptibility among waterfowl agents

4. Incorporate mutability in HPAI virulence as well as waterfowl susceptibility as a

factor of exposure

5. Simulate hypothetical monitoring stations at predetermined locations (i.e.,

places likely to attract stopover that were relatively close to human settlements)

as the means to gauge the efficacy of single versus networked stations to detect

and confirm the HPAI outbreak

In the first stage of ABM development, we consulted basic knowledge about

general waterfowl migratory biology. We sourced this information from traditional

monitoring efforts, such as local field surveys, standardized mark-release-recapture

programs, and station-network monitoring (Bellrose and Crompton 1970; Flock

1972; Dau 1992; Moermond and Spindler 1997; Winker and Gibson 2010), as well

as individual tracking data gathered using modern technology (Ely et al. 1997;

Green et al. 2002; Mosbech et al. 2006; Alerstam et al. 2007; Gaidet et al. 2010;

Prosser et al. 2009, 2011; Krementz et al. 2012; Takekawa et al. 2010, 2013; Ely

and Franson 2014). From these collective data, we were able to broadly parameter-

ize the timing of population movements, distributions of distances moved, and

stopover duration for the generalized waterfowl species being modeled. Since we

were not attempting to precisely model one species or replicate an exact situation,

our ABM was simply intended to be a starting point from which it can be tailored to

specific systems or questions in the future.

The ABM that we constructed was designed from the second stage onward to

include more complex daily movement and stopover rules, to introduce individual

variation, to model contagious disease dynamics (Brown et al. 2008; Gaidet et al.

2010), and to emulate what was the ultimate focus—evaluating the efficacy of a

network of monitoring stations to detect and confirm HPAI arrival by way of

aeroecological connections. Because species often have different mechanisms

driving large- (i.e., continental) versus small-scale (i.e., local) navigation (see

Chap. 6), we allowed for modest spatiotemporal shifts in migratory flight behavior

of the generalized waterfowl species throughout the migratory period. We also

incorporated simple rules to allow symptomatic birds to be more readily detected at

monitoring stations (Brown and Stallknecht 2008) and for both virus and host

agents to evolve as the simulation progressed and passed through the stages of

the SEIR model. Below we outline the final composition of our ABM which

incorporates additions from all five stages of model development.

2.1 Populating the Arena, Agents, and Disease

Our ABM focused on the individual movements of a generalized waterfowl species

during a hypothetical 90-day autumnmigration period that connected birds between
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their molting locations in eastern Siberia to wintering grounds in the southern USA

or northern Mexico. This reflects a hypothetical situation where HPAI enters the

Americas via southward migration of arctic-breeding birds. The arena of possible

bird locations included an area extending from eastern Siberia to Iceland, Central

America, and Venezuela (Fig. 17.1). This area was projected to a Lambert Azi-

muthal Equal Area sphere centered on 100�Wwith latitude of origin at 45�N, which
provided a meter-based overlay of the area of interest. At 10 km intervals along

both the x- and y-axes, we plotted a grid of possible stopover locations for agents

during their migration. We excluded as possible stopover sites those grid points

positioned greater than 200 km from land, since the waterfowl agent simulated was

intended to prefer land and realistic disease monitoring capacity would be restricted

to the near-coast region.

Fig. 17.1 Map of ABM arena showing 10-km grid of possible stopover points (blue), starting

locations of uninfected agents (green), the population of disease origin (red), and 12 monitoring

stations (yellow; numbered according to Table 17.2). Rendering the large number of stopover grid

points at this scale has created an artificial distortion in the graphic

17 The Aerosphere as a Network Connector of Organisms and Their Diseases 433



To reduce processing time, we prepopulated properties for each grid point using

data from underlying landscape characteristics maps (Fig. 17.2). These “static

variables” included distance and direction to the closest ocean coastline, lakeshore,

and river, as well as elevation, anthropogenic biome types, and human disturbance

(Table 17.1A). We used these measures during the ABM simulations to allow

individual agents to assess the stopover sites to inform avoidance, attraction, and

settlement decisions when picking a stopover destination. We allowed certain

metrics for each grid point to dynamically change during the simulations, which

had implications for waterfowl agent stopover as well as HPAI transmission as the

ABM progressed. These metrics included daily values of the total number of

occupants, the number of diseased occupants, as well as the mean and standard

deviation of disease virulence among infected occupants at each grid point

(variables #1 through #4 in Table 17.1B; hereafter referenced in the format

“Table 17.1B [1–4]”). Also tracked were individual agent metrics of status (alive

and migrating), disease susceptibility, and the virulence and days of infection of any

carried HPAI strain (Table 17.1B [5–9]).

At the outset of the ABM (i.e., “Day 0”), the total number of starting agents (106)

was equally distributed across ten hypothetical molting areas in eastern Siberia

(Fig. 17.1). Our first introduction of variation into the simulation came during the

disease seeding process when we allowed the ABM to (1) randomly choose the

population where the disease originated; (2) randomly choose ~102 of the 105

occupants (i.e., 0.001 probability for any individual) at that population to be

infected; (3) randomly assign each individual’s disease susceptibility, regardless

of population or infection status (Table 17.1B [7]); (4) select an initial virulence for

each diseased individual from a gamma distribution (Table 17.1B [8]); and (5) ran-

domly choose each infected individual’s preexisting day of infection from a gamma

distribution (Table 17.1B [9]).

Fig. 17.2 Layer data embedded into each grid point in preparation for the ABM simulation.

Shown atop the “Human Disturbance” layer is part of the 10-km grid of possible stopover locations

as well as an example neighborhood (outlined in blue) within which an agent would probabilisti-

cally select its final stopover location based upon relative weightings of distance to water, human

disturbance, and current density of agents
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2.2 Daily Disease Transmission, and Mortality

At the outset of each new day, we programmed each uninfected individual to

consult its current grid point metrics to determine the probability that it was

exposed to a contagious agent (i.e., infection day � 4; Brown et al. 2008) given

that each individual, regardless of disease status, was arbitrarily set to randomly

experience exactly two density-independent interactions that would permit disease

transmission with the other occupant(s) of the population (e.g., close feeding

behaviors; Brown and Stallknecht 2008). If the agent was indeed exposed to a

contagious individual, the probability that it contracted the disease was contingent

on the susceptibility of the individual (Table 17.1B [7]) and, since the model did not

account for which contagious agent was contacted, the mean and standard deviation

of HPAI virulence at the population level (Table 17.1B [3,4]). Based upon a normal

distribution centered on this population mean virulence and scaled by the

accompanying population standard deviation, if a randomly drawn virulence

value exceeded the inverse value of the individual agent’s susceptibility, then we

set the infection day of the agent to 1. At the time of infection, the HPAI virus had

the ability to mutate according to a normally distributed multiplier (Table 17.1B

[11]). This meant that with every successful transmission, the HPAI strain could

become more or less virulent but was most likely to remain unchanged (i.e.,

multiplier of 1.0). We constructed the ABM to thereafter determine if the agent

would move to a new location.

Among waterfowl agents that were already diseased prior to the beginning of

each day, we provided the opportunity to clear their HPAI strain or, failing that, we

subjected these to an increasing probability of death prior to leaving their current

location. Our ABM dictated the probability of clearing the HPAI infection

according to three factors: (1) the virulence of the strain, (2) the susceptibility

(i.e., inverse resistance) of the individual waterfowl agent to HPAI, and (3) a

normally distributed multiplier with mean of 1.0 and standard deviation of 0.1. If

the virulence of the HPAI strain scaled by the random multiplier was less than the

inverse susceptibility of the individual agent, we allowed the agent to clear the

infection. When an HPAI strain was cleared, we adjusted the individual agent’s

susceptibility by a factor equivalent to the inverse of double the virulence of the

strain being cleared (Table 17.1B [10]). In other words, if a strain with a virulence

of 0.4 was cleared, the agent’s susceptibility would be 20% of what it had been [i.e.,

1 � (0.4 � 2)] and clearing a strain with virulence of 0.5 or greater imparted

complete immunity upon the individual (i.e., new susceptibility ¼ 0). This would

allow agents to possibly develop immunity to reinfection, especially if they cleared

a particularly virulent strain of HPAI.

To simulate mortality in the population as a function of the day of infection, we

used a logistic function (Table 17.1B [5]). This calculation meant that the probability

of mortality rose with each subsequent day of infection, especially after the HPAI

became communicable on Day 4. Yet, this function also meant that even nonconta-

gious individuals had a modestly increased likelihood of death, which allowed us to

ensure a background mortality among noninfected agents (i.e., infection day ¼ 0)

17 The Aerosphere as a Network Connector of Organisms and Their Diseases 437



equivalent to a 40% annual mortality in the absence of any disease (Franklin et al.

2002). If a randomly selected value between 0.0 and 1.0 fell below the infection

day-based probability of mortality, we removed the agent from the simulation and, if

it was infected, recorded upon its “death” the information about its HPAI strain’s

virulence (Table 17.1B [8 or 11]) and the number of sequential days it had been

infected (Table 17.1B [9 or 12]).

2.3 Daily Movements: Migration

There were two types of possible daily movements that our ABM allowed: long-

distance migration or neighborhood searches. The former, which we kept as

relatively uncommon events (i.e., mean of 10-day stopover; Takekawa et al.

2010), led to the agent moving hundreds of kilometers in a semi-random fashion.

If our ABM selected the agent to migrate, then we drew a random bearing from a

normal distribution with mean 170� and standard deviation of 60� (Fig. 17.3).

Because of our map projection, the real-world compass direction of movement

changed as a function of geographic position; this meant that the agent would

generally move in an eastern and then south-southeastern direction from its molting

grounds to wintering grounds (see Fig. 17.1). We thereafter selected from a gamma

distribution [γ(α, β); α ¼ 6, β ¼ 0.015] a movement distance for the migrating

agent. On the rare occasion that the selected value exceeded 1200 km, we folded the

Fig. 17.3 Probability distributions for movement distances (base) and directions (inset) when

agents migrated. Distance was calculated from a gamma distribution folded on itself beginning

with distances above 1200 km. Direction was drawn from a normal distribution with mean of 170�

and standard deviation of 60�
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distribution back on itself [i.e., final distance ¼ (1200 km-selected dis-

tance) þ 1200 km] to prevent unrealistic travel distances (Fig. 17.3).

Prior to finalizing the movement of the agent, we programmed our ABM to

check whether the proposed stopping point was valid (i.e., would land the agent

within the arena and�200 km from land). If the movement was not valid, we set the

model to pick a new migratory bearing and distance and recheck the validity of this

new proposed movement. If a valid move could not be found after 100 attempts, we

denied the agent the ability to migrate and, instead, relegated it to exploring its

neighborhood for a more ideal location (see Sect. 2.4).

When an agent completed its migration, we set the ABM to relocate it to the

nearest grid point and assess whether this was a sufficiently suitable stopover

location. We based this site assessment upon a summation of logistic avoidance

functions for elevation and human disturbance (Table 17.1A [5, 6]), plus

predetermined avoidance measures for anthropogenic biome type (Table 17.1A

[7]). We then calculated the total probability of avoidance (tAvoid; Table 17.1A

[8]) as the overlapping probability across all three factors (i.e., probability of

avoiding any or all factors). If a random value drawn from 0.0 to 1.0 was less

than tAvoid, then we forced the agent to move toward a nearby water feature

(coastline, lake, or river) based upon the relative attraction of each from the current

point. We determined the probability of displacement to one of the three alternative

water feature boundaries using separate logistic functions of attraction for

coastlines, lakes, and rivers (Table 17.1A [2–4]). These values were each further

adjusted by separate weightings for each water type that we had predefined in the

model: in our case, 0.2, 0.8, and 0.5, respectively. We then scaled the relative

attraction to each water type against the total draw across all three water types, and

the resulting value was used to define successive bins of probable relocation to each

water type. Based upon which bin contained a random number drawn between 0.0

and 1.0, we selected the associated nearby water boundary to relocate the agent.

2.4 Daily Movements: Neighborhood Exploration

At either the end of the migratory jump and possible relocation or, if the agent did

not migrate, at the original point, we allowed the agent to explore its neighborhood

for a “more suitable” location. We defined a neighborhood as the agent’s current

location plus all surrounding grid points within 25 km (n ¼ 20, unless any grid

points fell outside the 200 km coastline buffer or the ABM arena; Fig. 17.2). We

determined the relative attractiveness of the neighborhood grid points (RelBWwt)

based upon a combination of avoidance of human disturbance (Da; Table 17.1A

[6]) and the maximum attraction to coast, lake, or river (maxWA; Table 17.1A

[2–4]), as well as the total agent occupants (tOcc; Table 17.1B [1]) relative to a

predefined optimum (OptD): in our case arbitrarily set at 1500 agents/grid point. In

each case, we defined an adjustment factor so that the weighting of each variable

could be given more or less importance (“b” for Da, “w” for maxWA, “q” for tOcc).
The RelBWwt value was precalculated for each grid point as:
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RelBWwt ¼ �Da∗bð Þ þ maxWA∗wð Þ½ �
bþ wþ q

Since tOcc was a dynamic value, this required recalculation each day. We also

used a slope factor ( f ) to more strongly weight tOcc as it approached OptD. We did

this so that density could vary more in its influence over how agents selected the

optimal point in the neighborhood. The resulting formula for density weight

(DENSwt) was:

DENSwt ¼ 1=
tOcc� OptDj j
OptD∗f�1

þ 1

� �� �∗

q

The sum of DENSwt and RelBWwt provided a total weight for the grid point,

which we then scaled against the cumulative weight across all neighborhood grid

points to determine a relative bin size. We designated bins according to each one’s

sequential position in the neighborhood, and using a random draw from a uniform

distribution between 0.0 and 1.0, we selected the agent’s new point based upon the

bin in which this number fell.

Once a grid point was selected, we moved the agent to its new position and

accounted for it within the dynamic grid point metrics (Table 17.1B [1–4]).

Regardless of disease infection, we added every incoming agent to the tOcc tally.

We likewise added individuals diseased at least 4 days to the tally of occupants

likely to be contagious (cOcc; Brown et al. 2008) and then calculated a new mean

and standard deviation for HPAI virulence across all of the strains infecting

contagious individuals. We ensured that these new values for each metric could

only be consulted in the subsequent day and retained the day’s starting values so

that all subsequent disease transmission and migratory movements among the

remaining agents would remain unbiased. In this way, movement of a contagious

agent into a new population would not result in added probability of disease

exposure at this new location until the next day.

At the end of each simulated day, we recorded the total number of HPAI-

infected, contagious, and dead individual agents so that we could track the overall

disease dynamics throughout the entire simulation arena. We likewise recorded on

each day the status of each agent in terms of being alive and/or in a migratory state,

its current grid point position (Table 17.1B [0]), its susceptibility to HPAI, as well

as metrics of its HPAI infection: day of infection and virulence of the strain (zeros if

not infected; Table 17.1B [7–12], where applicable). For each grid point we also

logged daily metrics, including number of occupants, number of contagious

occupants, and the mean and standard deviation of virulence across all HPAI strains

present (Table 17.1B [1–4]. Across the entire 90-day study period, we tracked the

distribution of all agents—as well as the subset of contagious agents—relative to

the location of the disease origin, in this case: N62.703, W167.117 (red dot in

Fig. 17.1). We calculated the median, quartile, and maximum distances among

these two groupings at 6-day intervals during the study period and determined the

day by which each measure exceeded the minimum distance from the origin of the
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disease to the contiguous USA (4200 km). These latter calculations were intended

to estimate how quickly the agents and the disease, respectively, could have

possibly reached population centers in the contiguous USA.

2.5 Simulating Monitoring Effort

To evaluate on-the-ground monitoring of disease connectivity, we established a

simulated network of monitoring stations at twelve grid points that were located at

potentially favorable stopover locations (i.e., relatively low-altitude lakes with little

human disturbance within 50 km of human settlements; Fig. 17.1). We allowed the

stations to sample daily within a 12.5 km radius of the station (i.e., a 3 � 3 block of

grid points) for signs of communicable HPAI in the agents present. Early-infected

agents that were not yet contagious were considered undetectable (i.e., asymptom-

atic during Days 1–3). To roughly account for density-dependent sampling cover-

age, we calculated the daily probability of disease detection [P(dd)] using the log10
value of tOcc as the base of a root function for the proportion of cOcc in the

population:

P ddð Þ ¼
ffiffiffiffiffiffiffiffiffiffi
cOcc

tOcc

log10tOcc

r

This calculation allowed for contagious individuals to experience a higher rate

of detection, especially within smaller populations (Brown and Stallknecht 2008).

To increase random effects into the probability of disease detection, we then

multiplied the resulting value by a normally distributed chance factor with mean

of 1.0 and standard deviation of 0.25. If this adjusted detection probability was

lower than a random number drawn from a uniform distribution between 0.0 and

1.0, then we determined that HPAI had been detected at this location. We repeated

this process 99 more times, each time drawing new chance and random factors.

Across all of these repetitions, we then were able to calculate an overall probability

of a single detection at each site on each day as the proportion of iterations that

produced a positive detection. We likewise calculated the probability of a single

detection across any station in the monitoring network. We further calculated the

probability of detecting at least one additional contagious agent within a 3-day

window (i.e., a “confirming detection”). We calculated this probability separately at

each site, as well as collectively across sites, the latter representing a network of

stations that would be sharing real-time updates of HPAI detections. This assumed

that diagnosis and reporting of the disease could be accomplished in a single day,

which may be a departure from reality depending on the testing protocols required.

On the day of migration when the site or network had an 80% or greater

probability of detecting HPAI (i.e., a “likely detection”), we determined how far

the disease had already spread past the monitoring station, as well as the slope of the

1-day change in the contagious/symptomatic proportion of the surviving population

(i.e., the “apparent infection rate”; Van Der Plank 1963). For the former, we
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calculated this based upon the abundance and relative proportion of still-alive

agents that were contagious and located between 215� and 90� from the sampling

point (i.e., “escapees”). Among escapees we calculated the mean and median

distance from the sampling station, as well as the mean HPAI virulence among

contagious agents. In terms of the apparent infection rate occurring at the time of

likely detection, we calculated that value based upon the daily change in the

proportion of the still-alive population that were contagious, since these were the

only diseased individuals that were symptomatic (hence, “apparent”). We then

independently assessed the efficacy of each of the 12 sampling locations to detect

a disease during the early stages of the disease outbreak and then repeated these

same calculations using data based upon 3-day confirming detections. Complete

ABM code used within Agent Analyst/RePast available at: https://github.com/

rossjd/Migration_monitoring_ABM.
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Fig. 17.4 Boxplot distributions of distance from the Siberian population of disease origin among

both total occupants (white bars—grey circles) and contagious occupants (red bars and circles)

over 6-day intervals of the study period. Note the descending scale on the y-axis
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3 Results

3.1 Breeding-to-Wintering Ground Connectivity

Displacement data, measured as the minimum Great circle route distance over land

or ocean from the disease origin, indicated a relatively constant migration and

spread of the entire agent population throughout the 90-day simulation period

(Fig. 17.4). These patterns were evident as a linear increase of the median distance

(black bars within white boxplots in Fig. 17.4) and progressively higher variation

within the data (i.e., wider boxplots), respectively. The distribution of contagious

individuals, however, appeared to show a different and less-consistent pattern of

spread. Specifically, the midpoint of contagious individual locations appeared to

spread rapidly outward between Days 42 and 48, which corresponded to the period

of rapid collapse in the disease outbreak (Figs. 17.4 and 17.5). The relative

distribution of contagious individuals then appeared to largely stagnate, as the

Fig. 17.5 Disease prevalence, infection rates, and mortality metrics across the entire study arena

during the ABM-simulated study period. Cumulative numbers of dead agents (black diamonds) are

plotted along the upper-left axis, proportions of surviving agents that were diseased (orange

triangles) or contagious (red circles) are plotted along the upper-right axis, and day-to-day changes

in the proportion of contagious agents (i.e., the apparent infection rate) are plotted in the lower

panel (blue diamonds). The x-axis is consistent for both panels
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Fig. 17.6 Shifts in spatial distribution of agents (left panels) and disease prevalence/virulence

and host susceptibility (right panels) over three select days: (a, b) Day 23—confirming detection

by monitoring network; (c, d) Day 54—latest day of independent disease confirmation at a
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median displacement distance remained between 3300 and 3550 km from Day

48 onward (Fig. 17.3). These distances correspond to approximately northwestern

Canada, while the central quartiles during this same time period corresponded to

approximately eastern Alaska through western Canada and the Pacific Northwest of

the United States (i.e., 2500 and 5000 km from the disease origin; Figs. 17.1 and

17.6).

Cumulative migratory displacements long enough to have reached the contigu-

ous United States (~4200 km from the disease origin) were first observed among a

handful of agents by Day 12 of the period; though the second quartile of total

survivors did not reach this distance until Day 66 and their median distance did not

exceed this distance until after Day 84 (Fig. 17.4). Among contagious agents, the

total distance of travel first exceeded 4200 km by Day 18, although this was only

one individual. It was not until Day 30 that additional diseased individuals had

progressed far enough to possibly reach the contiguous United States (Fig. 17.4).

Following the rapid geographic shift in symptomatic agent displacement distances

after Day 42, the second quartile of surviving contagious agents overlapped

4200 km by Day 54. Though these agents were still able to normally migrate, the

sudden shift in the distribution was more likely attributable to massive die-offs of

diseased agents at locations closer to the HPAI outbreak origin than to an uptick in

daily migration distances among diseased agents. The median distance of displace-

ment from the HPAI origin site among symptomatic agents never exceed 4200 km;

therefore, by Day 90 the bulk of the contagious population could have never

reached the contiguous United States under this simulated scenario. However,

there were certainly many instances of symptomatic individuals appearing well

within that area (Fig. 17.6c), which could have been sufficient to infect resident

wild bird, domestic fowl, or even human populations.

3.2 Disease Monitoring

Networked Stations Using a 12-station network of monitoring stations throughout

northwestern North America, our model detected with a �80% probability the first

contagious agent on Day 18 of the migration period. By this point: only 0.16 and

0.56% of the surviving population were contagious or at least infected, respectively.

�

Fig. 17.6 (continued) monitoring station; and (e, f) Day 90—last day of simulation period. Left-

hand maps indicate: 1000 km distance intervals (white rings) from disease origin (red dot);

locations of uninfected agents (purple points), infected agents (in increasing abundance: blue,

yellow, and orange points), and starting populations of the nine uninfected populations (green

dots). Right-hand panels summarize within 1000 km distance bins from Siberian disease origin:

proportionate abundance and mean disease virulence among contagious (dashed black and red

lines, respectively) and early-infected agents (dotted black and orange lines, respectively), and

mean susceptibility among contagious (red bars), early-infected (orange bars), and uninfected

agents (blue bars)
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Furthermore, only 80 contagious agents (0.07% of survivors) had escaped beyond

any monitoring station by this day, although one symptomatic individual had

already reached a point 2320 km ESE past the northwestern-most monitoring

station (Minto, AK) and diseased escapees were located an average of 730 km

from that station. The mean virulence among strains that had passed at least one

monitoring station by Day 18 remained relatively low at 0.35 (Table 17.2A).

If at least one more confirming detection of the disease within a 3-day period was

required, then the network of stations was �80% likely to confirm the disease by

Day 23. By this point, 0.56 and 2.02% of the surviving population were contagious

or at least infected, respectively, and 607 contagious individuals (0.29% of

survivors) were already present beyond at least one monitoring station. Interest-

ingly, contagious individuals were spread similarly to Day 18, with the furthest

present 2042 km SSE from Minto, AK, diseased escapees located an average of

729 km beyond that station, and mean virulence remained relatively low at 0.36

(Table 17.2B). Most of the contagious agents were still contained within or near

Siberia or Alaska on Day 23 and the bulk of diseased individuals appeared to be

centered on the Bering Strait area (Fig. 17.6a).

Individual Stations Under the scenario of independently operating stations, the

rapidity of detecting the disease was understandably lower than if the stations were

in constant communication as a network. Certain stations appeared to be more

likely to detect the disease than others in the vicinity, particularly in Alaska where

the station closest to the Siberian disease origin (Minto, AK) was slower to detect or

confirm the outbreak (Days 29 and 32, respectively) than locations further south and

east (Table 17.2). This would have meant that this station wouldn’t have reported

the outbreak until it was well into the acceleration period (i.e., apparent infection

rate rising by 0.61–1.30% per day, depending on detection criteria). In contrast, the

nearest station to Minto, AK—located only 400 km SSE at Tazlina Lake, AK—

rapidly detected the disease outbreak and appeared to do so at an early stage of

disease acceleration (i.e., apparent infection rate was rising at only 0.10–0.36% per

day, depending on detection criteria; Table 17.2). The primary difference between

these stations was that Minto, AK, is located far inland (W of Fairbanks) while

Tazlina Lake, AK, is nearer the coastline (NE of Anchorage; Fig. 17.1). Within the

structure of the ABM, these characteristics could have favored greater amounts of

traffic near the latter station, which would have promoted greater probability of

disease transmission within increasingly dense stopover populations.

Across all stations, there was a strong positive correlation between the distance

from the disease origin in Siberia (N62.703, W167.117) and the day of earliest

disease detection, regardless of detection criteria (R2 ¼ 0.92 for either single or

confirming detections; Fig. 17.7). This would be consistent with the disease being

propagated relatively evenly across a broad front that progressed, on average,

between 135 and 145 km per day (calculated from regression slopes for single

and confirming detections, respectively). This rate of disease travel is very unlikely

to be simply mediated by individual movements when one considers that (1) the

migrations of individual waterfowl agents were set to occur on average every
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10 days, (2) those movements were selected from a gamma distribution that peaked

at ~330 km and was restricted to a maximum of 1200 km (Fig. 17.3), and (3) the

probability of mortality quickly rose as a function of the number of days infected.

Instead, the most parsimonious explanation is that disease transmission occurred

across a series of individuals that were newly infected at successive stopover sites.

This aligns with Gaidet et al.’s (2010) similar conclusions which were drawn from

actual satellite tracking data among East Asian migratory waterfowl.

3.3 Evolution of Disease Virulence and Host Susceptibility

Much as there was a strong correlation between the distances from the Siberian

HPAI origin to each monitoring station versus the days of disease detection, there

was also a strong positive correlation between the latter and the mean HPAI

virulence among agents that had escaped past each monitoring station. Based

upon a linear regression of these data, we found that HPAI virulence appeared to

consistently rise over time by a factor of þ0.005/day (data not shown). This

increase in virulence among surviving HPAI strains effectively reflects the iterative

selection pressure imposed on the virus over successive stages of mutation and

selection and is likely the result of the following aspects of our ABM: (1) waterfowl

Fig. 17.7 Linear relationship between the distance of monitoring stations from the Siberian

disease origin (x-axis) and the day of �80%-probable disease detection (inverted y-axis) for

both single detections (grey squares) and confirming detections (black circles). Data from

Minto, AK, are circled to illustrate their relative displacement above the regression line, which

indicates that disease detections were made at this site later than expected given the proximity of

the site to the disease origin
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hosts can develop resistance through exposure and recovery from less-virulent

HPAI strains; (2) clearing the infection is a function of susceptibility and the

virulence of the present HPAI strain; and (3) the probability of mortality quickly

rises as a function of the number of days an agent has been infected.

The increase in mean virulence was not restricted to only those agents that

escaped beyond a given monitoring station; by the time the disease was confirmed

at the last station (Day 54 at Bear River NWR, UT; Table 17.2), the mean virulence

across the 5686 agents contagious on that day was 0.720 and across 4739 early-

infected but asymptomatic agents the mean virulence was 0.799. At the outset of the

simulation, 112 of 106 agents had been infected with HPAI strains that had a

collective mean virulence of only 0.227.

Reflecting the simulated evolutionary arms race incorporated into the ABM, the

HPAI susceptibility of surviving agents likewise shifted during the simulation; that

is, agents with increasingly lower susceptibility tended to resist the increasingly

more virulent strains. At the outset of the simulation (Day 0), the mean susceptibil-

ity across all 106 agents had been 0.793. By Day 54, the mean susceptibility had

fallen to 0.210 among uninfected agents (n¼ 101,916), 0.404 among early-infected

agents (n ¼ 4739), and 0.536 among contagious agents (n ¼ 5686). Among the

agents dead by Day 54, 821,658 had died while contagious, 27,232 had died when

early infected (Days 1–3), and 38,768 had died without infection (i.e., natural

background mortality).

Sticking with the example of Day 54, our examination of locations of diseased

agents indicated a dispersed distribution along the Pacific Coast and Rocky Moun-

tain region of North America (Fig. 17.6c). However, when we examined the mean

values of HPAI virulence and susceptibility across this area, we found that

individuals within a band 2000–3000 km from the disease origin possessed quite

virulent strains of the disease, which was counterbalanced by very low susceptibil-

ity—especially among uninfected individuals (Fig. 17.6d). At the leading edge of

the disease spread (i.e.,�5000 km from HPAI origin), mean susceptibility was high

among all agents, regardless of infection status, which indicates that neither natural

selection on hosts for high resistance nor a widespread acquisition of immunity had

greatly impacted those populations by Day 54. Across all but the smallest 1000 km

bins, a consistent pattern was observed for mean susceptibility—that contagious,

then early-infected, and then uninfected agents showed stepwise decreases in their

levels of susceptibility to HPAI (re)infection. This appeared to fit within the

construct of our ABM, wherein the host’s susceptibility is roughly proportional to

the inverse probability of clearing an infection (hence the higher susceptibility

among contagious agents) as well as the probability of being infected after exposure

(hence the elevated rate among early-infected agents relative to the

uninfected pool).

By the end of our simulation period on Day 90, the suppression of susceptibility

remained, though it had shifted further away from the disease origin and peaked at

the 4000–5000 km range (Fig. 17.6f). Mean virulence had risen to very high levels

across the arena, though the proportion of agents that were diseased had fallen to

very low levels. At the end of the simulation period, the original population of one

450 J.D. Ross et al.



million agents had been reduced to 90,615. This is a very high mortality rate and, as

such, may point to the present ABM as a “worst-case scenario” for the emergence

and pathology of the simulated HPAI strain. Of the remaining agents, 14,395 had

ceased migration at rather broadly spaced wintering locations generally in the

mid-continental USA (i.e., beyond 6000 km from the disease origin; Fig. 17.6e).

The mean virulence and susceptibility among the few infected wintering agents,

either contagious (n¼ 19) or not (n¼ 20), was 0.810 and 0.619, respectively. Mean

susceptibility among uninfected wintering agents, although relatively low at 0.362,

had not dropped to the levels seen in areas where the disease had been more

prevalent (i.e., 3000–5000 km from the origin; Fig. 17.6).

4 Discussion

The exercise we have presented in this chapter was aimed at the general topic of

tracking large-scale connectivity among individual animals, and the diseases they

carry, as they actively move through the aerosphere to traverse vast landscapes. The

ABM used in our theoretical scenario is broadly based upon generalized waterfowl

biology, including migration behaviors, conspecific attraction, landscape usage,

and HPAI transmission dynamics. Though flight-driven connectivity clearly has

the possibility to influence evolutionary and ecological processes related to the

species itself, such point-to-point links can drive other ecological processes such as

the transfer of energy, nutrients, parasites, or diseases.

A realistically parameterized agent-based model can allow the study of different

aspects of natural processes, such as bird migration or disease transmission, perhaps

even using the same simulation output in a similar fashion to how scientists of

various disciplines could each study different aspects of a natural system. A major

advantage of the ABM simulation framework is that we may readily alter input

parameters independently, which allows for sensitivity analyses regarding how

each factor might disproportionately affect the model output—something that is

not easily achieved or even possible under natural or rare circumstances. Even in

cases where the input parameters used in ABMs are approximations or

generalizations, such as in our case, the scenario evaluations possible through

individual-based modeling can still provide valuable biological insights that can

inform further data collection, modeling, or management planning (MacPherson

and Gras 2016).

4.1 Simulating Migratory Connectivity: Biological Insights

Movement through the aerosphere using powered flight is the fastest way that

vertebrate animals can naturally traverse large geographic distances (Alerstam

2003, 2011), allowing for transcontinental transmission of biomass over relatively

short periods of time. In the example presented in this chapter, the simulated

migration of one million generalized waterfowl from Siberia to the southern USA
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occurred in some cases within 3–4 weeks. Such rapid movements are not unusual

among migratory bird species (Fuller et al. 1998; Kjellén et al. 2001; Alerstam

2003), especially waterfowl (Green et al. 2002; Gaidet et al. 2010; Prosser et al.

2011), though cross-continental, longitudinal movements of individual land birds

remain only sparsely studied (e.g., Bairlein et al. 2012).

Long-distance migration facilitated the spread of our simulated highly patho-

genic virus. However, migration of the simulated waterfowl host was not in

complete lockstep with the dispersal of the HPAI outbreak. In part, this was because

of the time required for an HPAI outbreak to achieve critical mass and partly

because of apparent selective forces acting on both host and virus. With respect

to the former, our model indicated that communicable agents remained rare and the

mean virulence of HPAI strains they carried remained relatively low during the first

18 simulated days (Fig. 17.4), by which time nearly half of the total population had

moved beyond Siberia (i.e., displacements >1100 km). Even by Day 23, when the

disease had spread across Alaska and had been confirmed by the simulated moni-

toring network, the mean virulence of the disease remained modest (Table 17.2B),

although sufficient to readily infect the still quite-susceptible population of agents

(Fig. 17.6b).

Subsequent to Day 23, when the HPAI became rapidly more pathogenic and

prevalent, the rampant buildup of diseased occupants corresponded to widespread

mortality that ultimately resulted in the death of >90% of the entire agent popula-

tion (Fig. 17.5). A high proportion of surviving agents at distances >4000 km from

the disease origin were contagious by Day 54 (7.5%; Fig. 17.6d), which suggests

that the virus had disproportionately spread outward during the outbreak phase. The

median location of uninfected birds likewise continuously progressed further from

the disease origin (Fig. 17.4). However, at no point in our simulation did the median

distance of contagious individuals from the disease origin spread exceed 3600 km.

In effect, the center point of the disease population appeared to stall after being

transmitted only part of the way to wintering grounds. This supports the interesting

possibility that migration might initially help but eventually hinder the spread of

disease (Altizer et al. 2011), especially when it comes to the geographic extent of

HPAI spread (Lam et al. 2012). Such data could only be gleaned from studying the

individual interactions between disease and host (Morales et al. 2010) and are an

improvement upon well-founded but limited models of disease spread based on

very coarse-scale range maps and movements (e.g., Peterson et al. 2009).

The apparent selective interactions in our ABM between host and disease seem

to have driven another interesting dynamic—that the surviving populations

emerged with greatly elevated levels of resistance (inverse susceptibility) or viru-

lence, respectively. Since we had simulated only a single-species host for HPAI,

this meant that equilibrium was eventually reached and the disease returned to

relatively low incidence among the surviving hosts (Figs. 17.5 and 17.6). In this

respect, the HPAI population had been distilled down to nearly its most potent form

(i.e., virulence ¼ 1.0) as a result of selective feedback during stepwise migratory

jumps. One may predict that possible alternative hosts for HPAI encountered at

points further south could be quite susceptible to such a highly virulent strain of the
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disease. Such a situation could present a serious risk of rapid infection and wide-

spread mortality in these new hosts, even if there was some degree of native HPAI

resistance present. From a competitive standpoint, this could give migratory species

an evolutionary advantage on wintering grounds. From an economic standpoint,

this could mean that transmission of this HPAI strain into domestic stocks could

bring widespread devastation. Such scenarios are possible and warrant further

examination using ABMs which incorporate data from targeted quantification

studies, such as challenge assays of susceptibility, exposure, infection, and recov-

ery/clearance (Pantin-Jackwood et al. 2007; Brown et al. 2006, 2008).

4.2 ABM-Informed Disease Monitoring and Mitigation

Of significant human health and economic concern is whether confirmed disease

detections could be made early enough during an outbreak to prevent further spread

and allow effective mitigation efforts within already infected populations (Brown

and Stallknecht 2008). Since asymptomatic carriers (e.g., early-infected or resistant

individuals) might fly through the aerosphere rapidly and with fewer barriers, the

efficacy of a disease monitoring and mitigation program could be drastically altered

by delays of just a matter of days (DeLiberto et al. 2011). In our example, the twelve

hypothetical monitoring stations distributed from Alaska to Utah varied widely in

how quickly they were likely to detect the disease. This pattern was driven almost

entirely by the station’s distance from the disease origin. However, in the case of the

station at Minto, AK, detection and confirmation of the disease lagged far behind

the nearest station, Tazlina Lake, AK, despite the former being located closest to

the disease origin (Fig. 17.1). The comparative delay of 5 (single detection) to

7 days (confirmed detection; Table 17.2; Fig. 17.7) meant that by the time the

disease would have been independently reported at the Minto station, AK, the

disease was well into an outbreak, with apparent infection rates 6.2 to 3.6� higher

(respectively) than when HPAI was detected at Tazlina Lake (Table 17.2 and

Fig. 17.5). Losing this amount of time during the critical early stages of an HPAI

outbreak is likely to undermine the efficacy of subsequent mitigation efforts to stem

further disease spread (Brown and Stallknecht 2008). Under this scenario, the

resources allocated to the Minto monitoring station, AK, would have been much

more effective at other sites, such as closer to coastal waterways where the agents

appeared to accumulate (Fig. 17.6).

A communicating network of monitoring stations certainly improved the ability

to monitor for detectable symptoms of a disease outbreak, though with the caveat

that disease detection and information sharing were both instantaneous. Not sur-

prisingly, we found that the early warning efficacy of the network was driven by

data generated at only one or two stations in Alaska. Depending on our confidence

in the parameters of the model, we could be inclined to say that prioritization of

resources should be given to these stations if we wanted to maximize our probabil-

ity of detecting and confirming a disease during the earliest stages of an outbreak.
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However, by reducing the geographic spread of monitoring stations, agencies

would have limited capacity to track HPAI dynamics over the course of its invasion

of North America. We saw from our simulation that the bulk of the disease outbreak

never progressed much beyond Canada. However, our model also indicated that the

HPAI achieved a very high level of virulence along the migratory route. Tracing

such patterns so that the impending outcome can be more accurately predicted

could be critical to avoid an over- or understatement of risk. Such inaccuracies

could undermine regulatory agencies’ ability to elicit public responses in the face of

subsequent disease threats, especially as it pertains to reducing potential avenues of

host switching into humans.

4.3 Field Testing and Applying ABMs

Field monitoring is important as a way to continually refine predictive models, as

well as to validate the predictions being made in those same models. Such on-the-

ground efforts may also be the most effective way to monitor migratory populations

for evidence of communicable diseases, in particular those of potential human

economic or health impact such as avian influenza (Wobeser 2013). Our model

made relatively static assumptions regarding the detectability of contagious

individuals relative to asymptomatic or uninfected individuals and that detectability

would increasingly rise in smaller populations. However, human observers would

likely have much greater intuition about changes in the norm at their sites and could

provide the capacity to rapidly adjust monitoring efforts in the face of an emerging

disease outbreak. In turn, they could benefit from ABM simulations that focus their

search efforts into areas of highest risk for disease appearance and/or escape (e.g.,

disease may be more likely to slip by at lower-density stopover sites).

For management agencies tasked with preventing potential human impacts from

animal-borne diseases, there exists a delicate balance between reducing alpha error

(i.e., missing a disease when it is present) at the expense of increased beta error (i.e.,

false warnings of an impending outbreak). Yet, detecting a disease before it breaks

out across large geographic areas, as well as prescribing the appropriate mitigation

efforts, could prove impossible without sufficient foresight. Modeling scenarios of

biological connectivity from real-world observations could be a powerful, econom-

ical, and effective tool to forecast plausible events like the simplified disease

transmission and evolution model presented in this chapter. Such information

may provide a critical head start in developing and testing potential mitigation

strategies. Not only could these models predict what metrics to track during an

emerging outbreak or mitigation effort, but they could also define what natural

variation may be expected, so that the process can be evaluated in real time to

inform where shifts in approach may be needed. It could also pinpoint critical points

in the detection and reporting infrastructure, such as a need to rapidly but accurately

test for disease within fresh samples at field sites.
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Once a disease is detected, possible mitigation strategies could encompass a

suite of labor-intensive, socially disruptive, or fiscally expensive management

techniques that would be publicly unpopular if they were not objectively supported

by a predictive framework. ABMs can repeatedly gauge the probability that, for

instance, waterfowl migration would link subsequent stopover nodes within a

disease network and what outcomes may be anticipated from various mitigation

approaches. These data could provide managers the necessary information to

justifiably focus their actions where they could most likely have the intended effect

of stopping the disease outbreak. Again, such models could be continually refined

and tested as the real-world situation changes and could be accomplished in the

field on laptop computers.

4.4 Refining our Migration Connectivity and Disease
Monitoring ABM

As with any model, the accuracy of the ABM simulations depends upon the realism

of the rules and parameters used in their construction. Our example was, after all, a

simulated case study which generalized the migratory characteristics of typical

waterfowl species (see Sect. 2). The worst-case scenario presented contrasted prior

evaluations of HPAI incidence among migratory birds crossing the Bering Strait,

which found little evidence of the disease (Ip et al. 2008; Winker et al. 2007). It may

be that avian-borne diseases could enter a continent through a number of different

pathways (Peterson et al. 2007), and revisiting our ABM in light of contrasting

ground observations is simply another way that this tool can be refined to simulate

increasingly realistic scenarios.

Furthermore, our ABM did not account for other possible factors that would

likely affect the interplay between migration biology and HPAI disease dynamics.

For example, missing were possible mediating factors such as competition between

low and highly pathogenic influenza strains (Bourouiba et al. 2011), behavioral

avoidance of symptomatic conspecifics (Loehle 1995), stopover duration relative to

disease shedding (Gaidet et al. 2010; Feare 2010), impairments among diseased

individuals (van Gils et al. 2007; Kuiken 2013), or a full parameterization of

density-dependent interactions, especially within small groups (Runge and Marra

2005). On the other hand, the ABM also omitted possible disease-promoting factors

such as viral tenacity in the environment (Stallknecht and Brown 2009), cross-

species transmission (Kilpatrick et al. 2006; Boyce et al. 2009; Altizer et al. 2011),

and in-flight stopover/aggregation decisions (Alerstam 2011). Variables likely to

have context-dependent implications for disease spread, such as seasonal or daily

variation in stopover suitability (Bauer and Hoye 2014) or host energetic condition

(Beldomenico and Begon 2009; Arsnoe et al. 2011), were also not considered in the

ABM, and such factors could have drastic effects depending on their timing and

spatial patterning along the migratory route. With respect to the monitoring and

detection of the disease, here our ABM also disregarded possible extenuating

variables, such as interobserver or station variability in search efficiency, local
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environmental conditions, irregular schedules, and asymmetric detectability of

symptomatic individuals. In Box 17.1, we outline these possible additions to our

ABM, with brief descriptions of how each might affect the model outcomes.

Box 17.1 Outline of possible extensions of the ABM presented in the chapter

that would incorporate increasing realism into the simulation. This list is not

intended to be encompassing but a glimpse into how ABM approaches can

be as complex as desired (though at the possible expense of resolvability

among possible independent variable effects).

Candidate

variables

Relevance to host

migration or

susceptibility

Relevance to disease

transmission or

detection

Potential data

sources (with

examples)

Alternate transmission pathways

Cross-species Community

composition at

stopover sites and

interspecific

interactions may be

important

Domestic fowl may

be important stores

and sources of

pathogenic disease

(Kilpatrick et al.

2006); passerines are

overlooked as

potential carriers of

avian influenza

(Fuller et al. 2010)

Genetic tests of

cross-species

infections (Lam et al.

2012); disease

surveys across

multiple species

(Winker et al. 2007);

species association

data

Continental

entry points

Multiple pathways

by which species

might cross, entering

different migratory

pathways

Greater range of

possible disease

entry corridors

Circumcontinental

monitoring networks

(Peterson et al.

2007); integrative

individual tracking

studies (Bowlin

et al. 2010)

Environmental

deposition and

uptake

Susceptible

individuals may not

be able to avoid

exposure through

behavioral avoidance

of symptomatic birds

Leading edge of

migration may be

exposed to latent

virus spores at

stopover sites

Viral tenacity studies

at points across the

migratory corridor

(Stallknecht and

Brown 2009)

Refined monitoring network

Variable effort

and observer

effects

Stopover

aggregations could

be disrupted by

observer approach;

potentially exposes

sick individuals that

cannot escape

Increased lag period

between disease

arrival and detection

by site monitors;

elevated

conspicuousness of

symptomatic birds

Existing monitoring

station schedules and

coverages (Harris

et al. 2015);

experimental

detection

probabilities using

test drills

East-Asian

monitoring sites

Area of flyway

overlap and molting

grounds; provide

Monitoring effort

centered closer to the

known locations of

Existing monitoring

effort distributions in

East Asia (Okazaki

(continued)

456 J.D. Ross et al.



Box 17.1 (continued)

data on initial

demography,

energetic condition,

and community

composition

recent HPAI

outbreaks

(Alexander and

Brown 2009; Prosser

et al. 2011)

et al. 2000; Xu et al.

2013)

Demographically specific metrics

Navigation

ability

Age, sex, size, and

health impacts on the

speed and route

efficiency of

individuals

Certain demographic

classes may be more

likely to wander

further or stopover

longer, which could

affect exposure and

recovery dynamics

Individual tracking

studies using satellite

transmitters (Gilbert

et al. 2010) or

geolocators (Bridge

et al. 2011)

Disease

pathology

Age, sex, size, and

health impacts on the

disease susceptibility

of individuals

Virus transmittal

may be aided or

muted depending

upon the

demographic

composition of the

stopover population

Challenge studies of

different age classes,

species, or sexes

(Pantin-Jackwood

et al. 2007)

Density-

dependent

interactions

Density elevates

agonistic interactions

and redistribution to

suboptimal

locations; predation

risk tracks

population density

Increased disease

competition within

dense populations as

low-pathogenic

strains may inoculate

hosts (Bourouiba

et al. 2011)

Behavioral ecology

in migrant

aggregations (Runge

and Marra 2005);

time-allocation

budgets (Morales

et al. 2010)

Condition-dependent factors

Disease

susceptibility

Migratory birds may

be more susceptible

to disease during

molting periods or

under other stressors

(Feare 2010; Fuller

et al. 1998)

Virus transmittal

may be aided or

muted depending

upon the condition of

the exposed

individual

(Beldomenico and

Begon 2009)

Condition-dependent

challenge studies

(Arsnoe et al. 2011)

Functional

impairment

Migratory

movements affected

by infections, even

when asymptomatic

(van Gils et al. 2007)

Disease has

relatively narrow

window to infect

hosts and spread to

other populations

(Gaidet et al. 2010)

Test physiological

effects among

infected birds

(Kuiken 2013); track

in-flight physiology

(Gumus et al. 2015)

Migration biology factors

In-flight

decisions

Migratory birds are

capable of

continually assessing

underlying

landscapes for

Greater potential for

disease spread within

attractive stopover

habitats and among

Real-time individual

stopover choices

relative to dynamic

landscape factors

and ground-truthed

(continued)
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Box 17.1 (continued)

conspecific

aggregations or

suitable habitat

conspecific

groupings

population metrics

(Kays et al. 2015)

Fat stores and

replenishment

Migrants will be

constrained to

stopover for a

duration inversely

related to habitat

quality

Prolonged stopovers,

particularly

low-quality habitats,

could promote

disease exposure

Monitor individual

stopover duration

relative to

underlying habitat

(Takekawa et al.

2010)

Spatiotemporal landscape variability

Seasonal shifts

in resources

Climate-mediated

resource

competition; greater

motivation for

migration toward

suitable wintering

habitat (see

Chap. 16)

Virus spread must

match host’s speed

toward wintering

ground;

spatiotemporal

patterns in stressors

promoting infection

Incorporate seasonal

shifts in population

distributions and

resource availability

across the migratory

season (Bauer and

Hoye 2014)

Daily weather

patterns

Locally mediated

resource

competition; dictates

exodus, pathway,

and stopover

decisions (see

Chaps. 8 and 12)

Cycle of host

immigration and

emigration at

stopover sites may

ensure a constant

supply of potential

hosts

Relate archived

weather data to

existing daily

stopover site data for

numbers and

diversity of birds

infected (Winker and

Gibson 2010)

Host-disease evolutionary models

Viral mutability

and balancing

selection

Greater

parameterization of

host responses to

viral exposure,

including

immunocompetent

plasticity

(Beldomenico and

Begon 2009)

Underlying genetic

variation and

spatiotemporal

mutation

probabilities can

drive the pathology

of avian influenza

disease (Boyce et al.

2009)

Incorporate complex

algorithms

associated with

competition-driven

evolution

(DeAngelis and

Mooij 2005)

4.5 Future Directions for Aeroecological Network Analyses
Using ABMs

Biological processes occurring in the aerosphere are diverse and mediated by a

plethora of intrinsic and external factors. The application of ABMs to such a large-

scale and complex system will necessarily require increasingly greater parameteri-

zation based upon real-world measurements. Fortunately, as evinced by the wealth
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of knowledge presented in the other chapters of this volume, researchers are

continuing to increase our knowledge base of ecological processes occurring in

the aerosphere, especially as we gain the capability to track how individuals move

through this medium and the resulting impacts on population connectivity and

landscape permeability.

Aeroecology often revolves around the collection and analysis of so-called big

data. While the analysis of such large datasets is daunting, access to increasingly

powerful computational hardware is allowing us to fully leverage the power of

ABM framework to deconstruct, model, and ultimately understand the complex

processes underlying the airspace oddity that is life on the wing. For example,

ABMs could readily be applied to broad-scale ecological questions such as the

latitudinal redistribution of energy and nutrient resources by migratory animals

(Bauer and Hoye 2014). That said, there does exist the potential to

overparameterize an ABM at the expense of resolvability among the rapidly

expanding realm of variables and interactions. The advantage that the ABM

simulation framework allows in isolating specific variables for the purpose of

conducting sensitivity analyses could easily be swamped by an overabundance of

independent variables. A simple ABM, such as we’ve presented in this chapter, can

provide valuable insights even when it has omitted some variables or has not

incorporated all related data during its parameterization (MacPherson and Gras

2016).

The powered flight of animals can rapidly and extensively connect biological

communities, including pathogens, across the face of the world. A more thorough

understanding of how this connectivity operates can have profound ecological and

anthrosocial implications. This is especially true within the modern era, as wild

animals are increasingly forced into close association with rapidly growing human

population centers and the concentrated animal feeding operations that have

become the primary source of domesticated food. How might the future

aeroecological patterns affect such human–wildlife conflicts? We believe that

ABMs show promise to bind together what we are learning about the global-scale

and circannual patterns that comprise aeroecology, as we continue to construct a

mosaicked understanding of this yet-emerging scientific discipline.
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