70 research outputs found

    Adverse effects of inhaled sand dust particles on the respiratory organs of sheep and goats exposed to severe sand storms in Mongolia

    Get PDF
    Sand storms in Mongolia have increased in frequency and scale, resulting in increased exposure of the inhabitants of Asian countries, including Japan and Korea, to Asian sand dust (ASD), which results in adverse effects on the respiratory system. However, there is no information on the health risks of severe sand storms in domestic animals in Mongolia. The aim of the study was to investigate the effects of sand dust particles on the respiratory organs, including the lungs and tracheobronchial lymph nodes, of sheep and goats exposed to severe sand storms in Mongolia. Seven adult sheep and 4 adult goats that had been exposed to sand storms and 3 sheep with no history of exposure were included in this study. Lung tissues and tracheobronchial lymph nodes were subjected to histopathological and immunohistochemical examination. The mineralogical contents of the lungs and lymph nodes were determined using inductively coupled plasma atomic emission spectroscopy. Fibrosis and granulomatous lesions comprising macrophages containing fine sand dust particles were observed exclusively in the lungs of sheep and goats exposed to sand storms. The activity of macrophages was also demonstrated by the presence of IL-6, TNF, and lysozyme. In addition, silicon, which is the major element of ASD (kosa aerosol), was detected exclusively in the lung tissues of the exposed animals. Our findings suggest that exposure to sand dust particles may affect the respiratory systems of domestic animals during their relatively short life span

    Pathological study of chronic pulmonary toxicity induced by intratracheally instilled Asian sand dust (Kosa): possible association of fibrosis with the development of granulomatous lesions

    Get PDF
    Introduction. Exposure to Asian sand dust (ASD) is associated with enhanced pulmonary morbidity and mor­tality, and the reporting of such cases has rapidly increased in East Asia since 2000. The purpose of the study was to assess chronic lung toxicity induced by ASD. Material and methods. A total of 174 ICR mice were randomly divided into 5 control and 17 exposure groups. Suspensions of low dose (0.2, 0.4 mg) and high dose (3.0 mg) of ASD particles in saline were intratracheally instilled into ICR mice, followed by sacrifice at 24 hours, 1 week, and 1, 2, 3 and 4 months after instillation. Paraffin sections of lung tissues were stained with hematoxylin and eosin and by immunohistochemistry to detect α-smooth muscle actin, collagen III, matrix metalloproteinase-9 (MMP-9), tissue inhibitor of metalloproteinases-1 (TIMP-1), CD3, CD20, immunoglobulin G, interleukin-1β and inducible nitric oxide synthase. Results. A lung histological examination revealed similar patterns in the lesions of the groups treated with high (3.0 mg) or low dose (0.4 mg) of ASD. Acute inflammation was observed 24 h after treatment and subsided after 1 week; persistent granulomatous changes were observed at 2 months, focal lymphocytic infiltration at 3 months, and granuloma formation at 4 months. An increase in the size of granulomatous lesions was observed over time and was accompanied by collagen deposition in the lesions. The cytoplasm of macrophages in inflammatory lesions showed positive immunolabeling for MMP-9 at 24 h, 1 and 2 months after instillation of 3.0 mg of ASD. Positive immunolabeling for TIMP-1 was demonstrated in the cytoplasm of macrophages at 2 and 4 months after instillation of 3.0 mg of ASD. These findings suggest association between the expression of MMP-9 and TIMP-1 with the development of lung granulomatous lesions. Conclusions. These findings suggest that collagen deposition resulting from the altered regulation of extracel­lular matrix is associated with granuloma formation in the lungs of mice treated with ASD

    Pathological study of pulmonary toxicity induced by intratracheally instilled Asian sand dust (Kosa): effects of lowered serum zinc level on the toxicity

    Get PDF
    Introduction. We have previously reported that Asian sand dust (ASD) induced acute and chronic inflammatory changes in the lung of mice. Zinc (Zn) is reported to influence inflammation and wound healing. The purpose of the study was to assess the effects of lowered serum Zn levels on the lung toxicity induced by ASD. Material and methods. Mice that were fed diets containing normal (group 1) or low (group 2) content of Zn for 8 weeks were intratracheally instilled with 3.0 mg of ASD, followed by sacrifice at 24 hours, 2 weeks, and 1, 2 and 3 months after instillation. Paraffin sections of lung tissues were stained by hematoxylin and eosin and by immunohistochemistry to detect tumor necrosis factor (TNF) and interleukin (IL)-1β as well as inflammasome (NALP3), autophagy (LC-3) and lysosome (LAMP-1) markers. Selected samples of lung tissue were examined by electron microscopy. Results. Following histological examination of the lung, similar patterns of inflammatory changes were observed in mice with normal and low serum Zn concentrations; however, they were more prominent and persistent in mice with low serum Zn level. These changes were both purulent (acute) and pyogranulomatous (chronic) in nature. In the lung lesions of group 2 mice the changes within the cytoplasmic vacuoles of enlarged ASD-containing macrophages (Mo) were clearly visible. The macrophages expressed TNF and IL-1β, and semi-quantitative analysis revealed a larger number of TNF-positive Mo in mice with normal level of serum Zn and a larger number of IL-1β-positive Mo in mice with low level of serum Zn. Decreased positive LC-3 staining and dilated lysosomes containing ASD particles were observed in the cytoplasm of Mo in mice with low serum Zn concentration. Conclusions. These findings suggest that low serum zinc concentration may induce the modulation of cytokine expression and lysosomal malfunction by phagocytotic and/or autophagic mechanisms, and may result in interstitial pyogranulomatous inflammation in the lungs of mice treated with ASD

    Leukocytapheresis for the treatment of acute exacerbation of idiopathic interstitial pneumonias : a pilot study

    Get PDF
    Objective : Idiopathic interstitial pneumonias (IIPs) are a group of heterogeneous diffuse parenchymal lung disorders of unknown etiology. An acute exacerbation (AE) is an acute respiratory deterioration that occurs in IIPs. The prognosis of AE of IIPs (AE-IIPs) is extremely severe ; however, no established therapies exist. We aimed to evaluate the efficacy of leukocytapheresis (LCAP) to treat patients with AE-IIPs. Patients and Methods : Six chronic IIPs patients who developed AE were enrolled in this study. We performed LCAP on days 2, 3, 9 and 10 in all six patients. All patients were also treated with high-dose corticosteroids and a continuous administration of low-molecular-weight heparin. We observed 30-day survival after the diagnosis of AE to evaluate the efficacy of LCAP. We also assessed oxygenation, high-resolution computed tomography (HRCT) findings, and certain chemical mediators in the peripheral blood. Results : Five of six patients survived more than 30 days. One patient died of progressive respiratory failure. Oxygenation and HRCT findings tended to improve in all survivors. The serum levels of lactate dehydrogenase, high mobility group box-1, and interleukin-18 were significantly decreased statistically post-LCAP. No severe adverse events occurred. Conclusion :We suggest that LCAP is a safe and effective therapy for treating patients with AE-IIPs

    Complete Genome Sequence and Comparative Analysis of the Fish Pathogen Lactococcus garvieae

    Get PDF
    Lactococcus garvieae causes fatal haemorrhagic septicaemia in fish such as yellowtail. The comparative analysis of genomes of a virulent strain Lg2 and a non-virulent strain ATCC 49156 of L. garvieae revealed that the two strains shared a high degree of sequence identity, but Lg2 had a 16.5-kb capsule gene cluster that is absent in ATCC 49156. The capsule gene cluster was composed of 15 genes, of which eight genes are highly conserved with those in exopolysaccharide biosynthesis gene cluster often found in Lactococcus lactis strains. Sequence analysis of the capsule gene cluster in the less virulent strain L. garvieae Lg2-S, Lg2-derived strain, showed that two conserved genes were disrupted by a single base pair deletion, respectively. These results strongly suggest that the capsule is crucial for virulence of Lg2. The capsule gene cluster of Lg2 may be a genomic island from several features such as the presence of insertion sequences flanked on both ends, different GC content from the chromosomal average, integration into the locus syntenic to other lactococcal genome sequences, and distribution in human gut microbiomes. The analysis also predicted other potential virulence factors such as haemolysin. The present study provides new insights into understanding of the virulence mechanisms of L. garvieae in fish

    Inhibitory Effects of Prior Low-dose X-irradiation on Ischemia-reperfusion Injury in Mouse Paw

    Get PDF
    We have reported that low-dose, unlike high-dose, irradiation enhanced antioxidation function and reduced oxidative damage. On the other hand, ischemia-reperfusion injury is induced by reactive oxygen species. In this study, we examined the inhibitory effects of prior low-dose X-irradiation on ischemia-reperfusion injury in mouse paw. BALB/c mice were irradiated by sham or 0.5 Gy of X-ray. At 4 hrs after irradiation, the left hind leg was bound 10 times with a rubber ring for 0.5, 1, or 2 hrs and the paw thickness was measured. Results show that the paw swelling thickness by ischemia for 0.5 hr was lower than that for 2 hrs. At 1 hr after reperfusion from ischemia for 1 hr, superoxide dismutase activity in serum was increased in those mice which received 0.5 Gy irradiation and in the case of the ischemia for 0.5 or 1 hr, the paw swelling thicknesses were inhibited by 0.5 Gy irradiation. In addition, interstitial edema in those mice which received 0.5 Gy irradiation was less than that in the mice which underwent by sham irradiation. These findings suggest that the ischemia-reperfusion injury is inhibited by the enhancement of antioxidation function by 0.5 Gy irradiation

    A Pathological Study of Acute Pulmonary Toxicity Induced by Inhaled Kanto Loam Powder

    Get PDF
    The frequency and volume of Asian sand dust (ASD) (Kosa) are increasing in Japan, and it has been reported that ASD may cause adverse respiratory effects. The pulmonary toxicity of ASD has been previously analyzed in mice exposed to ASD particles by intratracheal instillation. To study the pulmonary toxicity induced by inhalation of ASD, ICR mice were exposed by inhalation to 50 or 200 mg/m3 Kanto loam powder, which resembles ASD in elemental composition and particle size, for 6 h a day over 1, 3, 6, 9, or 15 consecutive days. Histological examination revealed that Kanto loam powder induced acute inflammation in the whole lung at all the time points examined. The lesions were characterized by infiltration of neutrophils and macrophages. The intensity of the inflammatory changes in the lung and number of neutrophils in both histological lesions and bronchoalveolar lavage fluid (BALF) appeared to increase over time. Immunohistochemical staining showed interleukin (IL)-6- and tumor necrosis factor (TNF)-α-positive macrophages and a decrease in laminin positivity in the inflammatory lesions of the lung tissues. Electron microscopy revealed vacuolar degeneration in the alveolar epithelial cells close to the Kanto loam particles. The nitric oxide level in the BALF increased over time. These results suggest that inhaled Kanto loam powder may induce diffuse and acute pulmonary inflammation, which is associated with increased expression of inflammatory cytokines and oxidative stress

    Neuromuscular and vascular hamartoma of the cecum in a dog

    Get PDF
    Neuromuscular and vascular hamartoma (NMVH) is a rare non-epithelial hamartoma of the intestine in humans that is characterized by proliferation of smooth muscle, blood vessels and bundles of unmyelinated nerve fibers in the intestinal submucosa. Here, we describe a case in which a mass lesion in the cecum of an 8-year-old male West Highland White Terrier dog. The mass caused an inversion of the cecum, which was surgically removed. The mass was found in the muscle layer of the inverted cecum, and on histology was composed of a proliferation of mainly spindle-shaped cells with fibrillar cytoplasm, vascular structures, and bundles of unmyelinated nerve fibers. These features of the mass are consistent with those described for NMVH in humans
    corecore