38 research outputs found
Intratumoral Injection of Propionibacterium acnes Suppresses Malignant Melanoma by Enhancing Th1 Immune Responses
Malignant melanoma (MM) is an aggressive cutaneous malignancy associated with poor prognosis; many putatively therapeutic agents have been administered, but with mostly unsuccessful results. Propionibacterium acnes (P. acnes) is an aerotolerant anaerobic gram-positive bacteria that causes acne and inflammation. After being engulfed and processed by phagocytes, P. acnes induces a strong Th1-type cytokine immune response by producing cytokines such as IL-12, IFN-γ and TNF-α. The characteristic Th2-mediated allergic response can be counteracted by Th1 cytokines induced by P. acnes injection. This inflammatory response induced by P. acnes has been suggested to have antitumor activity, but its effect on MM has not been fully evaluated
Dermoscopic image of the hairs in a very early lesion of tinea capitis caused by Trichophyton rubrum
Key Clinical Message While the initial lesions of tinea capitis are often overlooked due to their small size and numerous hairs emerging from the follicle, it is crucial not to dismiss the partial presence of comma or harpin hairs and black spots
Increasing Risk of Tick-Borne Disease through Growth Stages in Ticks
Rickettsia and Coxiella spp. are pathogens transmitted by ticks to humans. However, the developmental stage of the tick carrying the greatest risk of infection is unknown. Detection of pathogen-specific genes proves that ticks carrying Rickettsia or Coxiella spp. constitute a reservoir of infection. However, conventional PCR methods are unable to quantitate the pathogens within ticks. In the present study, we collected ticks in the endemic area of Japanese spotted fever, caused by Rickettsia japonica, and determined the rate of tick-borne pathogens carried by the ticks. As a method of evaluation, next-generation sequencing was used to estimate the proportion of pathogens in 10 adult and 10 larval ticks. Ticks were identified Haemaphysalis longicornis (H.L) from the results of the sequencing of PCR products amplified using tick identification-specific primers. The gene detection rates were 10/10 for Rickettsia sp. and 10/10 for Coxiella sp. among the adult ticks. For the larval ticks, the ratios were 7/10 and 5/10 for Rickettsia sp. and Coxiella sp., respectively. The largest proportion of Coxiella sp.-specific DNA reached 96% in one adult tick. The proportion of Rickettsia sp. genes ranged from 1.76% to 41.81% (mean, 15.56%) in the adult ticks. The proportions of Coxiella and Rickettsia spp. genes in the larvae ranged from 0% to 27.4% (mean 5.86%) and from 0% to 14.6% (mean 3.38%), respectively. When the percentage of Rickettsia sp., out of all pathogens detected via next-generation sequencing, was analyzed between the adult and larval stages of the ticks, a significant difference was observed at p = 0.0254. For Coxiella sp., a highly significant difference (p Rickettsia and Coxiella spp. genes were highest in adult H.L ticks. The risk of contracting tick-borne infections may increase with bites from adult ticks, especially those harboring Coxiella sp
Japanese Spotted Fever and Irreversible Renal Dysfunction during Immunosuppressive Therapy after a Living-Donor Kidney Transplant
Ten years ago, a 56-year-old woman with a history of IgA nephropathy who received a living-donor kidney transplant across ABO barriers was managed with immunosuppressive drugs. The kidney transplant donor was her father who had poor kidney function. The patient’s renal function was stable for 10 years. The patient visited our department with a complaint of skin rash, occurring 2 days after an onset of fever. Although a skin rash is atypical for Japanese spotted fever (JSF), we suspected JSF and started treatment with minocycline because we found a scar suggestive of an eschar. Furthermore, the blood test results were similar to those associated with JSF, and the patient lived in a JSF-endemic area. The patient’s symptoms improved after 1 week. She was diagnosed with JSF by serological tests against Rickettsia japonica. JSF usually does not cause any complications after recovery. However, the patient’s renal function did not completely recover. JSF can cause an atypical rash in patients taking excessive immunosuppressive drugs. Early treatment is required for patients with suspected JSF to prevent complications of renal dysfunction after receiving a living-donor kidney transplant
Consideration of serum IL‐36α and β levels trends in two patients with chikungunya fever
Key Clinical Message IL‐36 might play a role as an initial immune mechanism against chikungunya fever, and regulating IL‐36 production could be a potential treatment approach for this condition. Abstract Two Japanese siblings visited Cook Islands in 2015 and developed Chikungunya fever upon their return. The sister experienced high fever, joint pain, and leg swelling, while the brother had joint pain and a rash. Both siblings had a confirmed CHIKV infection and continued to experience prolonged joint pain, with the sister enduring chronic pain for about a year. In this study, the levels of IL‐36 in the serum of two siblings who were infected with chikungunya fever during the acute and recovery phases were compared using ELISA. IL‐36 is a cytokine that induces inflammation and is produced by cells in tissues such as the skin and mucosa. It was hypothesized that IL‐36 may be involved in persistent joint pain after chikungunya fever infection. Both siblings experienced long‐lasting joint pain after chikungunya fever infection. The levels of IL‐36α and IL‐36β decreased by 56 days after infection. In the results, IL‐36 plays an important role in host immunity and may act as part of the immune response during chikungunya virus infection. Inhibiting the release of IL‐36 could be a promising approach for developing new treatment methods for chikungunya fever
Janus Kinase Inhibitors Ameliorated Gastrointestinal Amyloidosis and Hypoalbuminemia in Persistent Dermatitis Mouse Model
Malnutrition is not only regarded as a complication of rheumatoid arthritis and inflammatory bowel disease but also that of inflammatory skin disease; however, the mechanisms and efficacy of its treatment have not been elucidated. Using a mouse model of dermatitis, we investigated the pathophysiology of malnutrition in inflammatory skin conditions and efficacy of its treatment. We employed spontaneous skin inflammation mice models overexpressing human caspase-1 in the epidermal keratinocytes. Body weight, nutrition level, and α1-antitrypsin fecal concentration were measured. The gastrointestinal tract was histologically and functionally investigated. Fluorescein isothiocyanate (FITC)-dextran was forcibly fed on an empty stomach, and plasma FITC-dextran was measured. The treatment efficacy of antibodies against tumor necrosis factor-α (TNF-α) and interleukin (IL)-α/β as well as Janus kinase (JAK) inhibitors was investigated. Compared with wild-type littermates, the inflammatory skin mice models showed a lowered body weight, reduction of serum albumin level, amyloid deposition in the stomach, small intestine, and large intestine, and increased α1-antitrypsin fecal concentration. However, the plasma FITC-dextran was unchanged between the dermatitis models and wild-type littermates. The over-produced serum amyloid A1 in the liver was detected in the plasma in the dermatitis model. Antibodies against TNF-α and IL-α/β showed partial effects on amyloid deposition; however, JAK inhibitors improved gastrointestinal amyloidosis with the improvement of skin symptoms. Chronic dermatitis is closely related to secondary amyloidosis in the gastrointestinal tract, resulting in hypoalbuminemia. Therefore, active control of skin inflammation is essential for preventing gastrointestinal complications
The Interplay of Type 1, Type 2, and Type 3 Lymphocytes and Cytokines in Atopic Dermatitis
Atopic dermatitis (AD) is classified as a type 2 disease owing to the majority of type 2 lymphocytes that constitute the skin-infiltrating leukocytes. However, all of the type 1–3 lymphocytes intermingle in inflamed skin lesions. Here, using an AD mouse model where caspase-1 was specifically amplified under keratin-14 induction, we analyzed the sequential changes in type 1–3 inflammatory cytokines in lymphocytes purified from the cervical lymph nodes. Cells were cultured and stained for CD4, CD8, and γδTCR, followed by intracellular cytokines. Cytokine production in innate lymphocyte cells (ILCs) and the protein expression of type 2 cytokine IL-17E (IL-25) were investigated. We observed that, as inflammation progresses, the cytokine-producing T cells increased and abundant IL-13 but low levels of IL-4 are produced in CD4-positive T cells and ILCs. TNF-α and IFN-γ levels increased continuously. The total number of T cells and ILCs peaked at 4 months and decreased in the chronic phase. In addition, IL-25 may be simultaneously produced by IL-17F-producing cells. IL-25-producing cells increased in a time-dependent manner during the chronic phase and may work specifically for the prolongation of type 2 inflammation. Altogether, these findings suggest that inhibition of IL-25 may be a potential target in the treatment of inflammation
Emaciation, Congestive Heart Failure, and Systemic Amyloidosis in Severe Recessive Dystrophic Epidermolysis Bullosa: Possible Internal Complications Due to Skin-Derived Inflammatory Cytokines Derived from the Injured Skin
Inherited epidermolysis bullosa (EB) is a rare genetic skin disorder characterized by epithelial tissue fragility. Recessive dystrophic epidermolysis bullosa (RDEB) is the most severe form, characterized by the presence of blisters, erosion, and ulcer formation, leading to scarring and contraction of the limbs. RDEB is also associated with extra-cutaneous complications, including emaciation, congestive heart failure, and systemic amyloidosis. The main cause of these clinical complications is unknown; however, we hypothesized that they are caused by elevated circulating inflammatory cytokines overproduced by injured keratinocytes. We addressed this phenomenon using keratin-14 driven, caspase-1 overexpressing, transgenic (KCASP1Tg) mice in which injured keratinocytes release high levels of IL-1α and β. KCASP1Tg showed severe spontaneous dermatitis, as well as systemic complications, including aberrant weight loss, cardiovascular disease, and extensive amyloid deposition with organ dysfunction, resembling the complications observed in severe EB. These morbid conditions were partially ameliorated by simultaneous administration of anti-IL-1α and β antibodies. The skin not only constitutes a physical barrier, but also functions as the largest immune organ. We suggest a novel role for IL-1 in the pathogenesis of EB and the use of anti-IL-1 antibodies as a potential therapy for EB complications