13,855 research outputs found

    Abundances of lithium, sodium, and potassium in Vega

    Full text link
    Vega's photospheric abundances of Li, Na, and K were determined by using considerably weak lines measured on the very high-S/N spectrum, while the non-LTE correction and the gravity-darkening correction were adequately taken into account. It was confirmed that these alkali elements are mildly underabundant ([Li/H] ~ -0.6, [Na/H] ~ -0.3, and [K/H] ~ -0.2) compared to the solar system values, as generally seen also in other metals. Since the tendency of Li being more deficient than Na and K is qualitatively similar to what is seen in typical interstellar cloud, the process of interstellar gas accretion may be related with the abundance anomaly of Vega, as suspected in the case of lambda Boo stars.Comment: Accepted for publication in MNRAS; 8 pages, 9 figure

    Constraints on the mass of a habitable planet with water of nebular origin

    Get PDF
    From an astrobiological point of view, special attention has been paid to the probability of habitable planets in extrasolar systems. The purpose of this study is to constrain a possible range of the mass of a terrestrial planet that can get water. We focus on the process of water production through oxidation of the atmospheric hydrogen--the nebular gas having been attracted gravitationally--by oxide available at the planetary surface. For the water production to work well on a planet, a sufficient amount of hydrogen and enough high temperature to melt the planetary surface are needed. We have simulated the structure of the atmosphere that connects with the protoplanetary nebula for wide ranges of heat flux, opacity, and density of the nebular gas. We have found both requirements are fulfilled for an Earth-mass planet for wide ranges of the parameters. We have also found the surface temperature of planets of <= 0.3 Earth masses is lower than the melting temperature of silicate (~ 1500K). On the other hand, a planet of more than several Earth masses becomes a gas giant planet through runaway accretion of the nebular gas.Comment: 25 pages, 8 figures, to appear in the 01 September 2006 issue of Ap

    Behavior of Li abundances in solar-analog stars II. Evidence of the connection with rotation and stellar activity

    Full text link
    We previously attempted to ascertain why the Li I 6708 line-strengths of Sun-like stars differ so significantly despite the superficial similarities of stellar parameters. We carried out a comprehensive analysis of 118 solar analogs and reported that a close connection exists between the Li abundance A_Li and the line-broadening width (v_r+m; mainly contributed by rotational effect), which led us to conclude that stellar rotation may be the primary control of the surface Li content. To examine our claim in more detail, we study whether the degree of stellar activity exhibits a similar correlation with the Li abundance, which is expected because of the widely believed close connection between rotation and activity. We measured the residual flux at the line center of the strong Ca II 8542 line, r_0(8542), known to be a useful index of stellar activity, for all sample stars using newly acquired spectra in this near-IR region. The projected rotational velocity (v_e sin i) was estimated by subtracting the macroturbulence contribution from v_r+m that we had already established. A remarkable (positive) correlation was found in the A_Li versus (vs.) r_0(8542) diagram as well as in both the r_0(8542) vs. v_e sin i and A_Li vs. v_e sin i diagrams, as had been expected. With the confirmation of rotation-dependent stellar activity, this clearly shows that the surface Li abundances of these solar analogs progressively decrease as the rotation rate decreases. Given this observational evidence, we conclude that the depletion of surface Li in solar-type stars, probably caused by effective envelope mixing, operates more efficiently as stellar rotation decelerates. It may be promising to attribute the low-Li tendency of planet-host G dwarfs to their different nature in the stellar angular momentum.Comment: 12 pages, 9 figures; accepted for publication in Astron. Astrophys
    • …
    corecore