993 research outputs found
Nonlocal energetic particle mode in a JT-60U plasma
Energetic-ion driven instability in a Japan Atomic Energy Research Institute Tokamak-60 Upgrade (JT-60U) [S. Ishida et al., Phys. Plasmas 11, 2532 (2004)] plasma was investigated using a simulation code for magnetohydrodynamics and energetic particles. The spatial profile of the unstable mode peaks near the plasma center where the safety factor profile is flat. The unstable mode is not a toroidal Alfv?n eigenmode (TAE) because the spatial profile deviates from the expected location of TAE and the spatial profile consists of a single primary harmonic m/n = 2/1 where m and n are poloidal and toroidal mode numbers. The real frequency of the unstable mode is close to the experimental starting frequency of the fast frequency sweeping mode. Simulation results demonstrate that energetic-ion orbit width and energetic-ion pressure significantly broaden radial profile of the unstable mode. For the smallest value among the investigated energetic-ion orbit width, the unstable mode is localized within 20% of the minor radius. This gives an upper limit of the spatial profile width of the unstable mode which the magnetohydrodynamic effects alone can induce. For the experimental condition of the JT-60U plasma, energetic ions broaden the radial width of the unstable mode spatial profile by a factor of 3. The unstable mode is primarily induced by the energetic particles
Drug Permeation across the Blood-Brain Barrier: Applications of Nanotechnology
The blood-brain barrier (BBB) is a neurobiological frontier that isolates brain tissues from the blood vascular system. Its main role is to protect the brain and the central nervous system from external fluctuations in hormones, nutrients and drugs, while allowing the passage of water and small lipophilic molecules. Diffusion across the BBB can occur through several biological mechanisms, but the most common one is simple diffusion, which mainly depends on the size, lipid solubility and concentration gradient of the molecule. Because of the highly dense network of capillary endothelium cells found in the BBB, most of the drugs are not able to cross this physiological barrier. Delivering therapeutic agents to the brain is thus a big challenge, which may prevent treatment of important neurological diseases. In order to overcome this difficulty, researchers have used nanotechnology to help the passage of drugs across the BBB. Nanotechnology has significantly contributed to the field of biotechnology by improving the strategies for drug delivery, and by providing novel carriers for safe and effective brain targeting. The aim of this review is to discuss in more details the anatomical structure and the functions of the BBB, as well as its significance in neurological diseases. A closer look will be given at the transport mechanisms across the BBB. This review finally explores the most recent advances in the field of nanotechnology for drug delivery in the brain, and gives meaningful examples of delivery systems developed including the micelles, liposomes, dendrimers, microcapsules and polymeric nanoparticles
Soft x-ray detector array system on the Large Helical Device
Soft x-ray (SX) detector array systems are installed on the Large Helical Device (LHD). Two types of systems are in operation: An 80 ch array for detailed profile measurement and two sets of 40 ch array installed inside the vacuum vessel suitable for fluctuation studies. Recent results of the profile and fluctuation measurement with this system are discussed
- …