739 research outputs found

    The 19-Vertex Model at critical regime ∣q∣=1|q|=1

    Full text link
    We study the 19-vertex model associated with the quantum group Uq(sl2^)U_q(\hat{sl_2}) at critical regime ∣q∣=1|q|=1. We give the realizations of the type-I vertex operators in terms of free bosons and free fermions. Using these free field realizations, we give the integral representations for the correlation functions.Comment: LaTEX2e, 19page

    SDiff(2) Toda equation -- hierarchy, Ï„\tau function, and symmetries

    Full text link
    A continuum limit of the Toda lattice field theory, called the SDiff(2) Toda equation, is shown to have a Lax formalism and an infinite hierarchy of higher flows. The Lax formalism is very similar to the case of the self-dual vacuum Einstein equation and its hyper-K\"ahler version, however now based upon a symplectic structure and the group SDiff(2) of area preserving diffeomorphisms on a cylinder S1×RS^1 \times \R. An analogue of the Toda lattice tau function is introduced. The existence of hidden SDiff(2) symmetries are derived from a Riemann-Hilbert problem in the SDiff(2) group. Symmetries of the tau function turn out to have commutator anomalies, hence give a representation of a central extension of the SDiff(2) algebra.Comment: 16 pages (``vanilla.sty" is attatched to the end of this file after ``\bye" command

    Precision Medicine for Heart Failure: Lessons from Oncology

    Get PDF

    Quantum integrable multi atom matter-radiation models with and without rotating wave approximation

    Full text link
    New integrable multi-atom matter-radiation models with and without rotating wave approximation (RWA) are constructed and exactly solved through algebraic Bethe ansatz. The models with RWA are generated through ancestor model approach in an unified way. The rational case yields the standard type of matter-radiaton models, while the trigonometric case corresponds to their q-deformations. The models without RWA are obtained from the elliptic case at the Gaudin and high spin limit.Comment: 9 pages, no figure, talk presented in int. conf. NEEDS04 (Gallipoli, Italy, July 2004

    Integrable Time-Discretisation of the Ruijsenaars-Schneider Model

    Full text link
    An exactly integrable symplectic correspondence is derived which in a continuum limit leads to the equations of motion of the relativistic generalization of the Calogero-Moser system, that was introduced for the first time by Ruijsenaars and Schneider. For the discrete-time model the equations of motion take the form of Bethe Ansatz equations for the inhomogeneous spin-1/2 Heisenberg magnet. We present a Lax pair, the symplectic structure and prove the involutivity of the invariants. Exact solutions are investigated in the rational and hyperbolic (trigonometric) limits of the system that is given in terms of elliptic functions. These solutions are connected with discrete soliton equations. The results obtained allow us to consider the Bethe Ansatz equations as ones giving an integrable symplectic correspondence mixing the parameters of the quantum integrable system and the parameters of the corresponding Bethe wavefunction.Comment: 27 pages, latex, equations.st

    Explorations of the Extended ncKP Hierarchy

    Full text link
    A recently obtained extension (xncKP) of the Moyal-deformed KP hierarchy (ncKP hierarchy) by a set of evolution equations in the Moyal-deformation parameters is further explored. Formulae are derived to compute these equations efficiently. Reductions of the xncKP hierarchy are treated, in particular to the extended ncKdV and ncBoussinesq hierarchies. Furthermore, a good part of the Sato formalism for the KP hierarchy is carried over to the generalized framework. In particular, the well-known bilinear identity theorem for the KP hierarchy, expressed in terms of the (formal) Baker-Akhiezer function, extends to the xncKP hierarchy. Moreover, it is demonstrated that N-soliton solutions of the ncKP equation are also solutions of the first few deformation equations. This is shown to be related to the existence of certain families of algebraic identities.Comment: 34 pages, correction of typos in (7.2) and (7.5

    Cathodoluminescence characterization of Ge-doped CdTe crystals

    Get PDF
    Cathodoluminescence (CL) microscopic techniques have been used to study the spatial distribution of structural defects and the deep levels in CdTe:Ge bulk crystals. The effect of Ge doping with concentrations of 10(17) and 10(19) cm(-3) on the compensation of V-Cd in CdTe has been investigated. Dependence of the intensity distribution of CL emission bands on the dopant concentration has been studied. Ge doping causes a substantial reduction of the generally referred to 1.40 eV luminescence, which is often present in undoped CdTe crystals, and enhances the 0.91 and 0.81 eV emissions
    • …
    corecore