76 research outputs found

    Breast cancer growth and metastasis: interplay between cancer stem cells, embryonic signaling pathways and epithelial-to-mesenchymal transition

    Get PDF
    Induction of epithelial-to-mesenchymal transition (EMT) in cancer stem cells (CSCs) can occur as the result of embryonic pathway signaling. Activation of Hedgehog (Hh), Wnt, Notch, or transforming growth factor-β leads to the upregulation of a group of transcriptional factors that drive EMT. This process leads to the transformation of adhesive, non-mobile, epithelial-like tumor cells into cells with a mobile, invasive phenotype. CSCs and the EMT process are currently being investigated for the role they play in driving metastatic tumor formation in breast cancer. Both are very closely associated with embryonic signaling pathways that stimulate self-renewal properties of CSCs and EMT-inducing transcription factors. Understanding these mechanisms and embryonic signaling pathways may lead to new opportunities for developing therapeutic agents to help prevent metastasis in breast cancer. In this review, we examine embryonic signaling pathways, CSCs, and factors affecting EMT

    Differentiation of breast cancer stem cells by knockdown of CD44: promising differentiation therapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Breast cancer stem cells (BCSCs) are the source of breast tumors. Compared with other cancer cells, cancer stem cells show high resistance to both chemotherapy and radiotherapy. Targeting of BCSCs is thus a potentially promising and effective strategy for breast cancer treatment. Differentiation therapy represents one type of cancer stem-cell-targeting therapy, aimed at attacking the stemness of cancer stem cells, thus reducing their chemo- and radioresistance. In a previous study, we showed that down-regulation of CD44 sensitized BCSCs to the anti-tumor agent doxorubicin. This study aimed to determine if CD44 knockdown caused BCSCs to differentiate into breast cancer non-stem cells (non-BCSCs).</p> <p>Methods</p> <p>We isolated a breast cancer cell population (CD44<sup>+</sup>CD24<sup>- </sup>cells) from primary cultures of malignant breast tumors. These cells were sorted into four sub-populations based on their expression of CD44 and CD24 surface markers. CD44 knockdown in the BCSC population was achieved using small hairpin RNA lentivirus particles. The differentiated status of CD44 knock-down BCSCs was evaluated on the basis of changes in CD44<sup>+</sup>CD24<sup>- </sup>phenotype, tumorigenesis in NOD/SCID mice, and gene expression in relation to renewal status, metastasis, and cell cycle in comparison with BCSCs and non-BCSCs.</p> <p>Results</p> <p>Knockdown of CD44 caused BCSCs to differentiate into non-BCSCs with lower tumorigenic potential, and altered the cell cycle and expression profiles of some stem cell-related genes, making them more similar to those seen in non-BCSCs.</p> <p>Conclusions</p> <p>Knockdown of CD44 is an effective strategy for attacking the stemness of BCSCs, resulting in a loss of stemness and an increase in susceptibility to chemotherapy or radiation. The results of this study highlight a potential new strategy for breast cancer treatment through the targeting of BCSCs.</p

    Molecular Landscape and Actionable Alterations in a Genomically Guided Cancer Clinical Trial: National Cancer Institute Molecular Analysis for Therapy Choice (NCI-MATCH).

    Get PDF
    PURPOSE: Therapeutically actionable molecular alterations are widely distributed across cancer types. The National Cancer Institute Molecular Analysis for Therapy Choice (NCI-MATCH) trial was designed to evaluate targeted therapy antitumor activity in underexplored cancer types. Tumor biopsy specimens were analyzed centrally with next-generation sequencing (NGS) in a master screening protocol. Patients with a tumor molecular alteration addressed by a targeted treatment lacking established efficacy in that tumor type were assigned to 1 of 30 treatments in parallel, single-arm, phase II subprotocols. PATIENTS AND METHODS: Tumor biopsy specimens from 5,954 patients with refractory malignancies at 1,117 accrual sites were analyzed centrally with NGS and selected immunohistochemistry in a master screening protocol. The treatment-assignment rate to treatment arms was assessed. Molecular alterations in seven tumors profiled in both NCI-MATCH trial and The Cancer Genome Atlas (TCGA) of primary tumors were compared. RESULTS: Molecular profiling was successful in 93.0% of specimens. An actionable alteration was found in 37.6%. After applying clinical and molecular exclusion criteria, 17.8% were assigned (26.4% could have been assigned if all subprotocols were available simultaneously). Eleven subprotocols reached their accrual goal as of this report. Actionability rates differed among histologies (eg, \u3e 35% for urothelial cancers and \u3c 6% for pancreatic and small-cell lung cancer). Multiple actionable or resistance-conferring tumor mutations were seen in 11.9% and 71.3% of specimens, respectively. Known resistance mutations to targeted therapies were numerically more frequent in NCI-MATCH than TCGA tumors, but not markedly so. CONCLUSION: We demonstrated feasibility of screening large numbers of patients at numerous accruing sites in a complex trial to test investigational therapies for moderately frequent molecular targets. Co-occurring resistance mutations were common and endorse investigation of combination targeted-therapy regimens

    口腔インプラント室における臨床統計観察

    Get PDF
    In November 1994, the Oral Implant Room was established as a clinic at the Dental Hospital of Iwate Medical University School of Dentistry. Since then, with the cooperation of the implant committee members recommended from each hospital department, we have performed treatment for the recovery of stomatognathic function. Therefore, with the goal of understanding the results of the Oral Implant Center, the clinical statistics of the treatment provided in the 14 years and 5 months between its opening and March 2009 were assembled, and the following results were obtained. 1. There were 148 cases of implantation involving 129 patients (54 men, 75 women). 2. Mean age at time of implantation was 50.6 years. Individuals in their 50s outnumbered those of other decades, and women outnumbered men. 3. A total of 513 implants were implanted (192 maxilla, 321 mandible), with an average of 3.5 implants per person. 4. The average time between primary surgery and secondary surgery was 5 months 24 days for the maxilla and 3 months 17 days for the mandible. 5. Regarding the distribution of implants, 52.6% were mandibular free-end and 29.3% were in the anterior maxilla. 6. Of the implant patients, 10.7% were smokers and 24.8% were drinkers. 7. The survival rate for the implants was 97.9%

    Novel Apoptosis-Inducing Agents for the Treatment of Cancer, a New Arsenal in the Toolbox

    No full text
    Evasion from apoptosis is an important hallmark of cancer cells. Alterations of apoptosis pathways are especially critical as they confer resistance to conventional anti-cancer therapeutics, e.g., chemotherapy, radiotherapy, and targeted therapeutics. Thus, successful induction of apoptosis using novel therapeutics may be a key strategy for preventing recurrence and metastasis. Inhibitors of anti-apoptotic molecules and enhancers of pro-apoptotic molecules are being actively developed for hematologic malignancies and solid tumors in particular over the last decade. However, due to the complicated apoptosis process caused by a multifaceted connection with cross-talk pathways, protein&ndash;protein interaction, and diverse resistance mechanisms, drug development within the category has been extremely challenging. Careful design and development of clinical trials incorporating predictive biomarkers along with novel apoptosis-inducing agents based on rational combination strategies are needed to ensure the successful development of these molecules. Here, we review the landscape of currently available direct apoptosis-targeting agents in clinical development for cancer treatment and update the related biomarker advancement to detect and validate the efficacy of apoptosis-targeted therapies, along with strategies to combine them with other agents

    Perspectives on research activity in the USA on Cancer Precision Medicine

    No full text

    A review of mechanisms of resistance to immune checkpoint inhibitors and potential strategies for therapy

    No full text
    Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of cancer over the last decade, bringing about a paradigm shift in systemic cancer therapy away from traditional cytotoxic and targeted therapies. While some patients have dramatic treatment responses, it is sobering to note that most tumors are either resistant at the outset, or develop resistance after initial response. A major area of translational and clinical research is in identifying therapeutic strategies to overcome resistance to ICIs. We have performed an in-depth review of the different mechanisms of resistance and potential avenues to overcome resistance through rationally designed combination treatment with ICIs

    Precision Oncology with Drugs Targeting the Replication Stress, ATR, and Schlafen 11

    No full text
    Precision medicine aims to implement strategies based on the molecular features of tumors and optimized drug delivery to improve cancer diagnosis and treatment. DNA replication is a logical approach because it can be targeted by a broad range of anticancer drugs that are both clinically approved and in development. These drugs increase deleterious replication stress (RepStress); however, how to selectively target and identify the tumors with specific molecular characteristics are unmet clinical needs. Here, we provide background information on the molecular processes of DNA replication and its checkpoints, and discuss how to target replication, checkpoint, and repair pathways with ATR inhibitors and exploit Schlafen 11 (SLFN11) as a predictive biomarker

    Rethinking Oncologic Treatment Strategies with Interleukin-2

    No full text
    High-dose recombinant human IL-2 (rhIL-2, aldesleukin) emerged as an important treatment option for selected patients with metastatic melanoma and metastatic renal cell carcinoma, producing durable and long-lasting antitumor responses in a small fraction of patients and heralding the potential of cancer immunotherapy. However, the adoption of high-dose rhIL-2 has been restricted by its severe treatment-related adverse event (TRAE) profile, which necessitates highly experienced clinical providers familiar with rhIL-2 administration and readily accessible critical care medicine support. Given the comparatively wide-ranging successes of immune checkpoint inhibitors and chimeric antigen receptor T cell therapies, there have been concerted efforts to significantly improve the efficacy and toxicities of IL-2-based immunotherapeutic approaches. In this review, we highlight novel drug development strategies, including biochemical modifications and engineered IL-2 variants, to expand the narrow therapeutic window of IL-2 by leveraging downstream activation of the IL-2 receptor to selectively expand anti-tumor CD8-positive T cells and natural killer cells. These modified IL-2 cytokines improve single-agent activity in solid tumor malignancies beyond the established United States Food and Drug Administration (FDA) indications of metastatic melanoma and renal cell carcinoma, and may also be safer in rational combinations with established treatment modalities, including anti-PD-(L)1 and anti-CTLA-4 immunotherapy, chemotherapies, and targeted therapy approaches
    corecore