170 research outputs found

    Investigating the role of papain-like cysteine protease RD21 in plant-pathogen interactions

    Get PDF
    DCG-04 is a biotinylated derivative of cysteine protease inhibitor E-64, which irreversibly reacts with papain-like cysteine proteases (PLCPs) when these proteases are active. Using DCG-04, seven active proteases are labelled in Arabidopsis leaf extracts. Of these, RD21 (responsive to desiccation-21) was found to have increased activity during the infection with avirulent Pseudomonas syringe in Arabidopsis cell cultures. Infection with a virulent strain caused post-translational suppression of RD21 activity. These data suggest that RD21A plays a role in defence. We therefore challenged single, double and triple knock-out lines of RD21-like proteases with several pathogens and detected an altered susceptibility for Botrytis cinerea, but not the other pathogens tested. Presumably because adapted pathogens might use inhibitors that make them insensitive for RD21A. As an alternative reverse genetic approach, we silenced the RD21 orthologs of Nicotiana benthamiana using virus-induced gene silencing with Tobacco Rattle Virus (TRV)-based silencing vectors. NbRd21 silencing resulted in retarded growth and spreading cell death, most likely triggered by a combination of NbRd21 silencing and TRV presence. Interestingly, silencing of autophagy-related genes, ATG3 and ATG6, pheno-copied NbRD21 silencing. Furthermore, DCG-04 activity profiling assay showed the suppression of NbRD21 activity and up-regulation of NbRd21 transcript in ATG3 (and ATG6) silenced plants, which implies a connection between RD21, cell death and autophagy. To identify other defence-related PLCPs, we applied benzothiadiazole (BTH) to trigger the salicylic acid�regulated defence pathway in tomato. Of the seven PLCPs tested, transcription of only PIP1 and RCR3 were induced. Sequencing of PLCP alleles of tomato relatives revealed that same proteases, PIP1 and RCR3, are under diversifying selection, resulting in variant residues around the substrate binding groove. Taken together these data indicate that some PLCPs are involved in plant-pathogen interactions

    Development of a mouse iron overload-induced liver injury model and evaluation of the beneficial effects of placenta extract on iron metabolism

    Get PDF
    Hepatic iron deposition is seen in cases of chronic hepatitis and cirrhosis, and is a hallmark of a poorer prognosis. Iron deposition is also found in non-alcoholic steatohepatitis (NASH) patients. We have now developed a mouse model of NASH with hepatic iron deposition by combining a methione- and choline-deficient (MCD) diet with an iron-overload diet. Using this model, we evaluated the effects of human placenta extract (HPE), which has been shown to ameliorate the pathology of NASH. Four-week-old male C57BL/6 mice were fed the MCD diet with 2% iron for 12 weeks. In liver sections, iron deposition was first detected around the portal vein after 1 week. From there it spread throughout the parenchyma. Biliary iron concentrations were continuously elevated throughout the entire 12-week diet. As a compensatory response, the diet caused elevation of serum hepcidin, which accelerates excretion of iron from the body. Accumulation of F4/80-positive macrophages was detected within the sinusoids from the first week onward, and real-time PCR analysis revealed elevated hepatic expression of genes related inflammation and oxidative stress. In the model mice, HPE treatment led to a marked reduction of hepatic iron deposition with a corresponding increase in biliary iron excretion. Macrophage accumulation was much reduced by HPE treatment, as was the serum oxidation-reduction potential, an index of oxidative stress. These data indicate that by suppressing inflammation, oxidative stress and iron deposition, and enhancing iron excretion, HPE effectively ameliorates iron overload-induced liver injury. HPE administration may thus be an effective strategy for treating NASH.ArticleHeliyon 5(5) : e01637-(2019)journal articl

    Placental extract suppresses cardiac hypertrophy and fibrosis in an angiotensin II-induced cachexia model in mice

    Get PDF
    Cachexia is an intractable metabolic disorder that causes extreme weight loss. It is a symptom of many chronic diseases, including cancer, liver failure, congestive heart failure and chronic kidney disease, and there is as yet no effective treatment. While the mechanisms underlying cachexia are complex, it is often accompanied by elevated angiotensin II (Ang II). Human placental extract (HPE) is a source of numerous biologically active molecules and has been used clinically to treat chronic hepatitis, liver cirrhosis and other chronic diseases. Here, we investigated the effects of HPE in an Ang II-induced cachexia model in mice. HPE treatment preserved both fat mass and lean body mass and suppressed weight loss in the cachexia model, though food intake was unaffected. Ang II infusion also caused cardiac hypertrophy and fibrosis. HPE suppressed these effects as well as Ang II-induced cardiac expression of genes related to heart failure and cardiac remodeling. HPE also reversed Ang II-induced downregulation of mitochondria-related molecules and suppressed cardiac inflammation and oxidative stress. HPE administration may thus be an effective approach to the treatment of cachexia, cardiac hypertrophy and fibrosis.ArticleHeliyon 5(10) : e02655-(2019)journal articl

    Regulation of Adrenomedullin and its Family Peptide by RAMP System - Lessons from Genetically Engineered Mice

    Get PDF
    Adrenomedullin (ADM), originally identified as a vasodilating peptide, is now recognized to be a pleiotropic molecule involved in both the pathogenesis of cardiovascular diseases and circulatory homeostasis. Homozygotes of ADM knockout mice (ADM-/-) were lethal at mid-gestation with abnormalities of vascular development and this finding clarified the angiogenic potency of ADM. Calcitonin gene-related peptide (CGRP), which has a structure and function similar to that of ADM, has been identified as a family peptide of ADM. Unlike ADM-/-, CGRP-/- were apparently normal. Therefore, the study of knockout mice first clarified the distinctly different physiological roles between ADM and CGRP. In contrast, heterozygotes of ADM knockout mice (ADM+/-) were alive but showed blood pressure elevation, reduced neovascularization, and enhanced neointimal formation by arterial injury. Based on these observations, there was hope ADM would have a therapeutic use. However, ADM has a short half-life in the blood stream and its application in chronic disease has limitations. Therefore, we focused on the ADM receptor system. The calcitonin-receptor-like receptor (CLR), which is the ADM receptor, associates with one of the accessory proteins, called receptor activity-modifying proteins (RAMPs). By interacting with RAMP1, CLR exhibits a high affinity for CGRP, whereas by interacting with either RAMP2 or -3, CLR exhibits a high affinity for ADM. We generated RAMP knockout mice and found that vascular phenotypes similar to ADM-/- were reproduced only in RAMP2-/-. This shows that RAMP2 is the key determinant of the vascular functions of ADM. RAMP2 could be an attractive therapeutic target in cardiovascular diseases.ArticleCURRENT PROTEIN & PEPTIDE SCIENCE. 14(5):347-357 (2013)journal articl

    Altered Homeostasis of CD4+ Memory T Cells in Allogeneic Hematopoietic Stem Cell Transplant Recipients: Chronic Graft-versus-Host Disease Enhances T Cell Differentiation and Exhausts Central Memory T Cell Pool

    Get PDF
    AbstractAn increased risk of late infection is a serious complication after allogeneic hematopoietic stem cell transplantation (AHSCT), especially for recipients with defective CD4+ T cell recovery. Although chronic graft-versus-host disease (cGVHD) negatively influences CD4+ T cell reconstitution, the mechanisms leading to this defect are not well understood. We found that the proportion of CD27− CD4+ T cells was remarkably increased in ASHCT recipients with cGVHD or with repetitive infectious episodes. Isolated CD27− CD4+ T cells from ASHCT recipients had significantly shortened telomere length, displayed enhanced vulnerability to activation-induced cell death, and showed extremely reduced clonal diversity, when compared with CD27− CD4+ T cells from healthy donors. Also, CD27+ CD4+ T cells from AHSCT recipients easily lost their expression of CD27 in response to antigen stimulation regardless of cGVHD status. Taken together, these data indicate that homeostasis of memory CD4+ T cells from AHSCT recipients is altered, and that they easily transit into CD27− effector memory T cells. Increased in vivo T cell stimulation observed in recipients with cGVHD further promotes the transition to effector memory cells, a change that decreases the central memory CD4+ T cell pool and consequently weakens the recipient’s defense against persistently infecting pathogens

    Endogenous CGRP protects against neointimal hyperplasia following wire-induced vascular injury

    Get PDF
    信州大学博士(医学)・学位論文・平成25年3月31日授与(甲第942号)・楊 磊Neointimal hyperplasia is the primary lesion underlying atherosclerosis and restenosis after percutaneous coronary intervention. Calcitonin gene-related peptide (CGRP) is produced by alternative splicing of the primary transcript of the calcitonin/CGRP gene. Originally identified as a strongly vasodilatory neuropeptide, CGRP is now known to be a pleiotropic peptide widely distributed in various organs and tissues. Our aim was to investigate the possibility that CGRP acts as an endogenous vasoprotective molecule. We compared the effect of CGRP deficiency on neointimal formation after wire-induced vascular injury in wild-type and CGRP knockout (CGRP-/-) mice. We found that neointimal formation after vascular injury was markedly enhanced in CGRP-/- mice, which also showed a higher degree of oxidative stress, as indicated by reduced expression of nitric oxide synthase, increased expression of p47phox, and elevated levels of 4HNE, as well as greater infiltration of macrophages. In addition, CGRP-deficiency led to increased vascular smooth muscle cell (VSMC) proliferation within the neointima. By contrast, bone marrow-derived cells had little or no effect on neointimal formation in CGRP-/- mice. In vitro analysis showed that CGRP-treatment suppressed VSMC proliferation, migration, and ERK1/2 activity. These results clearly demonstrate that endogenous CGRP suppresses the oxidative stress and VSMC proliferation induced by vascular injury. As a vasoprotective molecule, CGRP could be an important therapeutic target in cardiovascular disease. (C) 2013 Elsevier Ltd. All rights reserved.ArticleJOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY. 59(0):55-66 (2013)journal articl

    Adrenomedullin in sinusoidal endothelial cells play protective roles against cold injury of liver

    Get PDF
    Donor organ damage caused by cold preservation is a major problem affecting liver transplantation. Cold preservation most easily damages liver sinusoidal endothelial cells (LSECs), and information about the molecules modulating LSECs function can provide the basis for new therapeutic strategies. Adrenomedullin (AM) is a peptide known to possess anti-apoptotic and anti-inflammatory properties. AM is abundant in vascular endothelial cells, but levels are comparatively low in liver, and little is known about its function there. In this study, we demonstrated both AM and its receptors are expressed in LSECs. AM treatment reduced LSECs loss and apoptosis under cold treatment. AM also downregulated cold-induced expression of TNF alpha, IL1 beta, IL6, ICAM1 and VCAM1. AM reduced apoptosis and expression of ICAM1 and VCAM1 in an in vivo liver model subjected to cold storage. Conversely, apoptosis was exacerbated in livers from AM and RAMP2 (AM receptor activity-modifying protein) knockout mice. These results suggest that AM expressed in LSECs exerts a protective effect against cold-organ damage through modulation of apoptosis and inflammation.ArticlePEPTIDES. 31(5):865-871 (2010)journal articl

    Induction of LYVE-1/stabilin-2-positive liver sinusoidal endothelial-like cells from embryoid bodies by modulation of adrenomedullin-RAMP2 signaling

    Get PDF
    Embryonic stem cells (ESCs) are a useful source for various cell lineages. So far, however, progress toward reconstitution of mature liver morphology and function has been limited. We have shown that knockout mice deficient in adrenomedullin (AM), a multifunctional endogenous peptide, or its receptor-activity modifying protein (RAMP2) die in utero due to poor vascular development and hemorrhage within the liver. In this study, using embryoid bodies (EBs)-culture system, we successfully induced liver sinusoidal endothelial-like cells by modulation of AM-RAMP2. In an EB differentiation system, we found that co-administration of AM and SB431542, an inhibitor of transforming growth factor beta (TGF beta) receptor type 1, markedly enhanced differentiation of lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1)/stabilin-2-positive endothelial cells. These cells showed robust endocytosis of acetylated low-density lipoprotein (Ac-LDL) and upregulated expression of liver sinusoidal endothelial cells (LSECs)-specific markers, including factor 8 (F8), Fc-gamma receptor 2b (Fcgr2b), and mannose receptor C type 1 (Mrc1), and also possessed fenestrae-like structure, a key morphological feature of LSECs. In RAMP2-null liver, by contrast, LYVE-1 was downregulated in LSECs, and the sinusoidal structure was disrupted. Our findings highlight the importance of AM-RAMP2 signaling for development of LSECs. (C) 2011 Elsevier Inc. All rights reserved.ArticlePEPTIDES. 32(9):1855-1865 (2011)journal articl

    Vascular Endothelial Adrenomedullin-RAMP2 System Is Essential for Vascular Integrity and Organ Homeostasis

    Get PDF
    信州大学博士(医学)・学位論文・平成25年3月31日授与(甲第935号)・小山 晃英Background-Revealing the mechanisms underlying the functional integrity of the vascular system could make available novel therapeutic approaches. We previously showed that knocking out the widely expressed peptide adrenomedullin (AM) or receptor activity-modifying protein 2 (RAMP2), an AM-receptor accessory protein, causes vascular abnormalities and is embryonically lethal. Our aim was to investigate the function of the vascular AM-RAMP2 system directly. Methods and Results-We generated endothelial cell-specific RAMP2 and AM knockout mice (E-RAMP2(-/-) and E-AM(-/-)). Most E-RAMP2(-/-) mice died perinatally. In surviving adults, vasculitis occurred spontaneously. With aging, E-RAMP2(-/-) mice showed severe organ fibrosis with marked oxidative stress and accelerated vascular senescence. Later, liver cirrhosis, cardiac fibrosis, and hydronephrosis developed. We next used a line of drug-inducible E-RAMP2(-/-) mice (DI-E-RAMP2(-/-)) to induce RAMP2 deletion in adults, which enabled us to analyze the initial causes of the aforementioned vascular and organ damage. Early after the induction, pronounced edema with enhanced vascular leakage occurred. In vitro analysis revealed the vascular leakage to be caused by actin disarrangement and detachment of endothelial cells. We found that the AM-RAMP2 system regulates the Rac1-GTP/RhoA-GTP ratio and cortical actin formation and that a defect in this system causes the disruption of actin formation, leading to vascular and organ damage at the chronic stage after the gene deletion. Conclusions-Our findings show that the AM-RAMP2 system is a key determinant of vascular integrity and homeostasis from prenatal stages through adulthood. Furthermore, our models demonstrate how endothelial cells regulate vascular integrity and how their dysregulation leads to organ damage. (Circulation. 2013;127:842-853.)ArticleCIRCULATION. 127(7):842-853 (2013)journal articl
    corecore