18 research outputs found

    Feedback Control of Flow Separation Using Plasma Actuator and FBG Sensor

    Get PDF
    A feedback control system for mitigating flow separation was developed by using a string-type dielectric-barrier-discharge (DBD) plasma actuator and a fiber Bragg grating (FBG) sensor. Tangential jets were induced from the string-type DBD plasma actuator, which was located at 5% chord from the leading edge of an NACA0024 airfoil. The FBG sensor was attached to the interior surface near the root of the cantilever beam modeled on the pressure surface of the airfoil. The strain at the cantilever root was reflected in the form of Bragg wavelengths (λB) detected by the FBG sensor when the cantilever tip was vibrated by the flow near the trailing edge of the airfoil. It was found that calculating running standard deviations in the Bragg wavelength (λB′) detected by the sensor was valuable for judging flow separation in real time. The feedback control of flow separation on the NACA0024 airfoil was successfully demonstrated by setting λB′=0.0028 with periodic flow separations generated in a wind tunnel by oscillating a side wall of the test section with frequency fw=0.42 Hz. It was confirmed that the appearance probability of flow separation tends to decrease with a decrease in the duration for calculating λB′ and with an increase in the duration of jet injection

    Effects of Nozzle Secondary Vortices on Unsteady Hub-Endwall Flow of a Turbine Rotor

    No full text

    Effects of the Installation Location of a Dielectric Barrier Discharge Plasma Actuator on the Active Passage Vortex Control of a Turbine Cascade at Low Reynolds Numbers

    No full text
    Because axial flow turbines are widely used as the main components of jet engines and industrial gas turbines, their energy reduction effect is significant, even with a slight performance improvement. These turbines operate over a wide range of Reynolds numbers. However, at low Reynolds numbers below 1 × 105, the aerodynamic characteristics deteriorate greatly, due to the flow separation of the boundary layer on the blade suction surface and an increase in the secondary flow. In this study, an experiment to reduce the passage vortex was conducted using a dielectric barrier discharge plasma actuator, which is expected to operate with a new innovative active flow control technology. The plasma actuator was installed on the endwall of a linear turbine cascade in the test section of a wind tunnel. From the velocity distribution measured using particle image velocimetry, the secondary flow vector, turbulence intensity, and vorticity were analyzed. The input voltage and frequency of the plasma actuator were fixed at 12 kVp-p and 10 kHz, respectively. In particular, the optimum installation location of the plasma actuator was examined from upstream to mid-passage positions of the turbine cascade (normalized axial location of Z/Cax = −0.35 to 0.51). In addition, the effect of the Reynolds number was examined by varying it between Reout = 1.8 × 104 and 3.7 × 104. From the experimental results, it was found that the optimum location of the plasma actuator was immediately before the blade leading edge (Z/Cax = −0.20 to −0.06). This is because the inlet boundary layer can be accelerated near the blade leading edge, weakening the horseshoe vortex which initially causes the passage vortex. At a higher Reynolds number, the passage vortex suppression effect of the plasma actuator is weakened, because the flow induced by the plasma actuators becomes relatively weaker as the mainstream velocity increases with an increase in the Reynolds number

    GT2003-38468 LDV MEASUREMENTS OF UNSTEADY MIDSPAN FLOW IN A TURBINE ROTOR AT LOW REYNOLDS NUMBER

    No full text
    ABSTRACT In this study, the unsteady flow field at midspan in an axial-flow turbine rotor at low Reynolds number (Re out,RT = 3.6×10 4 ) was investigated experimentally using a laser Doppler velocimetry (LDV) system. The time-averaged and timedependent distributions of velocity, flow angle, vorticity, turbulence intensity, and Reynolds stress were analyzed in terms of both absolute and relative frames of reference. In the relative frame of reference, the nozzle wake had a slip velocity relative to the mean flow, which caused the wake fluid to migrate across the rotor passage and accumulate on the rotor suction surface. The effect of the nozzle wake on the flow field inside the rotor was determined qualitatively and quantitatively. The flow separation occurred at the rotor suction surface because of the low Reynolds number. The position of the separation onset fluctuated periodically as much as about 10% of the rotor axial-chord by the rotor-stator interaction. The turbulence in the wake region was anisotropy, and it exhibited strong Reynolds stress. NOMENCLATUR

    Effects of Input Voltage on Flow Separation Control for Low-Pressure Turbine at Low Reynolds Number by Plasma Actuators

    Get PDF
    Active flow control using dielectric barrier discharge (DBD) plasma actuators was investigated to reattach the simulated boundary layer separation on the suction surface of a turbine blade at low Reynolds number, Re = 1.7 × 104. The flow separation is induced on a curved plate installed in the test section of a low-speed wind tunnel. Particle image velocimetry (PIV) was used to obtain instantaneous and time-averaged two-dimensional velocity measurements. The amplitude of input voltage for the plasma actuator was varied from ±2.0 kV to ±2.8 kV. The separated flow reattached on the curved wall when the input voltage was ±2.4 kV and above. The displacement thickness of the boundary layer near the trailing edge decreased by 20% at ±2.0 kV. The displacement thickness was suddenly reduced as much as 56% at ±2.2 kV, and it was reduced gradually from ±2.4 kV to ±2.8 kV (77% reduction). The total pressure loss coefficient, estimated from the boundary layer displacement thickness and momentum thickness, was 0.172 at the baseline (actuator off) condition. The total pressure loss was reduced to 0.107 (38% reduction) at ±2.2 kV and 0.078 (55% reduction) at ±2.8 kV

    Effects of Input Voltage and Freestream Velocity on Active Flow Control of Passage Vortex in a Linear Turbine Cascade Using Dielectric Barrier Discharge Plasma Actuator

    No full text
    Passage vortex exists as one of the typical secondary flows in turbomachines and generates a significant total pressure loss and degrades the aerodynamic performance. Herein, a dielectric barrier discharge (DBD) plasma actuator was utilized for an active flow control of the passage vortex in a linear turbine cascade. The plasma actuator was installed on the endwall, 10 mm upstream from the leading edge of the turbine cascade. The freestream velocity at the outlet of the linear turbine cascade was set to range from UFS,out = 2.4 m/s to 25.2 m/s, which corresponded to the Reynolds number ranging from Reout = 1.0 × 104 to 9.9 × 104. The two-dimensional velocity field at the outlet of the linear turbine cascade was experimentally analyzed by particle image velocimetry (PIV). At lower freestream velocity conditions, the passage vortex was almost negligible as a result of the plasma actuator operation (UPA,max/UFS,out = 1.17). Although the effect of the jet induced by the plasma actuator weakened as the freestream velocity increased, the magnitude of the peak vorticity was reduced under all freestream velocity conditions. Even at the highest freestream velocity condition of UFS,out = 25.2 m/s, the peak value of the vorticity was reduced approximately 17% by the plasma actuator operation at VAC = 15 kVp-p (UPA,max/UFS,out = 0.18)

    Effects of Low Reynolds Number on Wake-Generated Unsteady Flow of an Axial-Flow Turbine Rotor

    Get PDF
    The unsteady flow field downstream of axial-flow turbine rotors at low Reynolds numbers was investigated experimentally using hot-wire probes. Reynolds number, based on rotor exit velocity and rotor chord length Reout,RT, was varied from 3.2×104 to 12.8×104 at intervals of 1.0×104 by changing the flow velocity of the wind tunnel. The time-averaged and time-dependent distributions of velocity and turbulence intensity were analyzed to determine the effect of Reynolds number. The reduction of Reynolds number had a marked influence on the turbine flow field. The regions of high turbulence intensity due to the wake and the secondary vortices were increased dramatically with the decreasing Reynolds number. The periodic fluctuation of the flow due to rotor-stator interaction also increased with the decreasing Reynolds number. The energy-dissipation thickness of the rotor midspan wake at the low Reynolds number Reout,RT=3.2×104 was 1.5 times larger than that at the high Reynolds number Reout,RT=12.8×104. The curve of the −0.2 power of the Reynolds number agreed with the measured energy-dissipation thickness at higher Reynolds numbers. However, the curve of the −0.4 power law fitted more closely than the curve of the −0.2 power law at lower Reynolds numbers below 6.4×104

    コンピュータ音楽スタジオ・アーカイブ (曲渕追加、木松沼削除)[Computer Music Studio Database]

    No full text
    Introducing 23 computer music studio in the USA and European countries note: Authors data can't be edited due to the software bu
    corecore