480 research outputs found

    On the distribution function of the information speed in computer network

    Full text link
    We review a study of the Internet traffic properties. We analyze under what conditions the reported results could be reproduced. Relations of results of passive measurements and those of modelling are also discussed. An example of the first-order phase transitions in the Internet traffic is presented.Comment: cpcauth.cls included, 6 pages, 3 eps figures, Proceeding CCP 2001 Aachen, to appear in Comp. Phys. Com

    Phase Transition in the Takayasu Model with Desorption

    Get PDF
    We study a lattice model where particles carrying different masses diffuse, coalesce upon contact, and also unit masses adsorb to a site with rate qq or desorb from a site with nonzero mass with rate pp. In the limit p=0p=0 (without desorption), our model reduces to the well studied Takayasu model where the steady-state single site mass distribution has a power law tail P(m)mτP(m)\sim m^{-\tau} for large mass. We show that varying the desorption rate pp induces a nonequilibrium phase transition in all dimensions. For fixed qq, there is a critical pc(q)p_c(q) such that if p<pc(q)p<p_c(q), the steady state mass distribution, P(m)mτP(m)\sim m^{-\tau} for large mm as in the Takayasu case. For p=pc(q)p=p_c(q), we find P(m)mτcP(m)\sim m^{-\tau_c} where τc\tau_c is a new exponent, while for p>pc(q)p>p_c(q), P(m)exp(m/m)P(m)\sim \exp(-m/m^*) for large mm. The model is studied analytically within a mean field theory and numerically in one dimension.Comment: RevTex, 11 pages including 5 figures, submitted to Phys. Rev.

    Binary spreading process with parity conservation

    Full text link
    Recently there has been a debate concerning the universal properties of the phase transition in the pair contact process with diffusion (PCPD) 2A3A,2A2A\to 3A, 2A\to \emptyset. Although some of the critical exponents seem to coincide with those of the so-called parity-conserving universality class, it was suggested that the PCPD might represent an independent class of phase transitions. This point of view is motivated by the argument that the PCPD does not conserve parity of the particle number. In the present work we pose the question what happens if the parity conservation law is restored. To this end we consider the the reaction-diffusion process 2A4A,2A2A\to 4A, 2A\to \emptyset. Surprisingly this process displays the same type of critical behavior, leading to the conclusion that the most important characteristics of the PCPD is the use of binary reactions for spreading, regardless of whether parity is conserved or not.Comment: RevTex, 4pages, 4 eps figure

    Aging process of electrical contacts in granular matter

    Full text link
    The electrical resistance decay of a metallic granular packing has been measured as a function of time. This measurement gives information about the size of the conducting cluster formed by the well connected grains. Several regimes have been encountered. Chronologically, the first one concerns the growth of the conducting cluster and is identified to belong to diffusion processes through a stretched exponential behavior. The relaxation time is found to be simply related to the initial injected power. This regime is followed by a reorganisation process due to thermal dilatation. For the long term behavior of the decay, an aging process occurs and enhances the electrical contacts between grains through microsoldering.Comment: 11 pages, 4 figure

    How the geometry makes the criticality in two - component spreading phenomena?

    Full text link
    We study numerically a two-component A-B spreading model (SMK model) for concave and convex radial growth of 2d-geometries. The seed is chosen to be an occupied circle line, and growth spreads inside the circle (concave geometry) or outside the circle (convex geometry). On the basis of generalised diffusion-annihilation equation for domain evolution, we derive the mean field relations describing quite well the results of numerical investigations. We conclude that the intrinsic universality of the SMK does not depend on the geometry and the dependence of criticality versus the curvature observed in numerical experiments is only an apparent effect. We discuss the dependence of the apparent critical exponent χa\chi_{a} upon the spreading geometry and initial conditions.Comment: Uses iopart.cls, 11 pages with 8 postscript figures embedde

    Directed Ising type dynamic preroughening transition in one dimensional interfaces

    Full text link
    We present a realization of directed Ising (DI) type dynamic absorbing state phase transitions in the context of one-dimensional interfaces, such as the relaxation of a step on a vicinal surface. Under the restriction that particle deposition and evaporation can only take place near existing kinks, the interface relaxes into one of three steady states: rough, perfectly ordered flat (OF) without kinks, or disordered flat (DOF) with randomly placed kinks but in perfect up-down alternating order. A DI type dynamic preroughening transition takes place between the OF and DOF phases. At this critical point the asymptotic time evolution is controlled not only by the DI exponents but also by the initial condition. Information about the correlations in the initial state persists and changes the critical exponents.Comment: 12 pages, 10 figure

    Unified View of Scaling Laws for River Networks

    Full text link
    Scaling laws that describe the structure of river networks are shown to follow from three simple assumptions. These assumptions are: (1) river networks are structurally self-similar, (2) single channels are self-affine, and (3) overland flow into channels occurs over a characteristic distance (drainage density is uniform). We obtain a complete set of scaling relations connecting the exponents of these scaling laws and find that only two of these exponents are independent. We further demonstrate that the two predominant descriptions of network structure (Tokunaga's law and Horton's laws) are equivalent in the case of landscapes with uniform drainage density. The results are tested with data from both real landscapes and a special class of random networks.Comment: 14 pages, 9 figures, 4 tables (converted to Revtex4, PRE ref added

    First order phase transition with a logarithmic singularity in a model with absorbing states

    Full text link
    Recently, Lipowski [cond-mat/0002378] investigated a stochastic lattice model which exhibits a discontinuous transition from an active phase into infinitely many absorbing states. Since the transition is accompanied by an apparent power-law singularity, it was conjectured that the model may combine features of first- and second-order phase transitions. In the present work it is shown that this singularity emerges as an artifact of the definition of the model in terms of products. Instead of a power law, we find a logarithmic singularity at the transition. Moreover, we generalize the model in such a way that the second-order phase transition becomes accessible. As expected, this transition belongs to the universality class of directed percolation.Comment: revtex, 4 pages, 5 eps figure

    Branching annihilating random walks with parity conservation on a square lattice

    Full text link
    Using Monte Carlo simulations we have studied the transition from an "active" steady state to an absorbing "inactive" state for two versions of the branching annihilating random walks with parity conservation on a square lattice. In the first model the randomly walking particles annihilate when they meet and the branching process creates two additional particles; in the second case we distinguish particles and antiparticles created and annihilated in pairs. Quite distinct critical behavior is found in the two cases, raising the question of what determines universality in this kind of systems.Comment: 4 pages, 4 EPS figures include
    corecore